全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Study of Warm Dark Matter, the Missing Satellites Problem, and the UV Luminosity Cut-Off

DOI: 10.4236/ijaa.2023.131002, PP. 25-38

Keywords: Cosmology: Dark Matter, Galaxies: Statistics

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the warm dark matter scenario, the Press-Schechter formalism is valid only for galaxy masses greater than the “velocity dispersion cut-off”. In this work we extend the predictions to masses below the velocity dispersion cut-off, and thereby address the “Missing Satellites Problem” of the cold dark matter ΛCDM scenario, and the rest-frame ultra-violet luminosity cut-off required to not exceed the measured reionization optical depth. For warm dark matter we find agreement between predictions and observations of these two phenomena. As a by-product, we obtain the empirical Tully-Fisher relation from first principles.

References

[1]  Klypin, A.A., Kravstov, A.V. and Valenzuela, O. (1999) Where Are the Missing Galactic Satellites? The Astrophysical Journal, 522, 82-92.
https://doi.org/10.1086/307643
[2]  Aghanim, N., et al. (2018) Planck 2018 Results. VI. Cosmological Parameters. Astronomy & Astrophysics, 641, A6.
[3]  Workman, R.L., et al. (Particle Data Group) (2022) The Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2022, 083C01.
[4]  Lapi, A. and Danese, L. (2015) Cold or Warm? Constraining Dark Matter with Primeval Galaxies and Cosmic Reionization after Planck. Journal of Cosmology and Astroparticle Physics, 9, 3.
https://doi.org/10.1088/1475-7516/2015/09/003
[5]  Mason, C.A., Trenti, M. and Treu, T. (2015) The Galaxy UV Luminosity Function before the Epoch of Reionization. The Astrophysical Journal, 813, 21.
https://doi.org/10.1088/0004-637X/813/1/21
[6]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Galaxy Stellar Masses, UV Luminosities, and Reionization. International Journal of Astronomy and Astrophysics, 12, 258-272.
https://doi.org/10.4236/ijaa.2022.123015
[7]  Press, W.H. and Schechter, P. (1974) Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. The Astrophysical Journal, 187, 425-438.
https://doi.org/10.1086/152650
[8]  Sheth, R.K. and Tormen, G. (1999) Large-Scale Bias and the Peak Background Split. Monthly Notices of the Royal Astronomical Society, 308, 119-126.
https://doi.org/10.1046/j.1365-8711.1999.02692.x
[9]  Sheth, R.K., Mo, H.J. and Tormen, G. (2001) Ellipsoidal Collapse and an Improved Model for the Number and Spatial Distribution of Dark Matter Haloes. Monthly Notices of the Royal Astronomical Society, 323, 1-12.
https://doi.org/10.1046/j.1365-8711.2001.04006.x
[10]  Lapi, A., et al. (2017) Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation. The Astrophysical Journal, 847, 13.
https://doi.org/10.3847/1538-4357/aa88c9
[11]  Song, M., Finkelstein, S.L., Ashby, M.L.N., et al. (2016) The Evolution of the Galaxy Stellar Mass Function at z = 4-8: A Steepening Low-Mass-End Slope with Increasing Redshift. The Astrophysical Journal, 825, 5.
https://doi.org/10.3847/0004-637X/825/1/5
[12]  Grazian, A., Fontana, A., Santini, P., et al. (2015) The Galaxy Stellar Mass Function at 3.5 ≤ z ≤ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF Fields. Astronomy and Astrophysics, 575, A96.
https://doi.org/10.1051/0004-6361/201424750
[13]  Davidzon, I., Ilbert, O., Laigle, C., et al. (2017) The COSMOS2015 Galaxy Stellar Mass Function: 13 Billion Years of Stellar Mass Assembly in 10 Snapshots. Astronomy and Astrophysics, 605, A70.
https://doi.org/10.1051/0004-6361/201730419
[14]  Bouwens, R.J., et al. (2015) UV Luminosity Functions at Redshifts z ≈ 4 to z ≈ 10: 10000 Galaxies from HST Legacy Fields. The Astrophysical Journal, 803, 34.
https://doi.org/10.1088/0004-637X/803/1/34
[15]  Bouwens, R.J., et al. (2021) New Determinations of the UV Luminosity Functions from z ≈ 9 to z ≈ 2 Show a Remarkable Consistency with Halo Growth and a Constant Star Formation Efficiency. The Astronomical Journal, 162, 47.
https://doi.org/10.3847/1538-3881/abf83e
[16]  McLeod, D.J., et al. (2015) New Redshift z ≈ 9 Galaxies in the Hubble Frontier Fields: Implications for Early Evolution of the UV Luminosity Density. MNRAS, 450, 3032.
https://doi.org/10.1093/mnras/stv780
[17]  Bouwens, R.J., Illingworth, G.D. and Oesch, P.A. (2014) UV-Continuum Slopes of 4000 z ≈ 4-8 Galaxies from the HUDF/XDF, HUDF09, ERS, CANDELS-South, and CANDELS-Northfields. The Astrophysical Journal, 793, 115.
https://doi.org/10.1088/0004-637X/793/2/115
[18]  Hoeneisen, B. (2022) Warm Dark Matter and the Formation of First Galaxies. Journal of Modern Physics, 13, 932-948.
https://doi.org/10.4236/jmp.2022.136053
[19]  Paduroiu, S., Revaz, Y. and Pfenniger, D. (2015) Structure Formation in Warm Dark Matter Cosmologies Top-Bottom Upside-Down. Monthly Notices of the Royal Astronomical Society.
https://arxiv.org/pdf/1506.03789.pdf
[20]  Hoeneisen, B. (2022) Comments on Warm Dark Matter Measurements and Limits. International Journal of Astronomy and Astrophysics, 12, 94-109.
https://doi.org/10.4236/ijaa.2022.121006
[21]  Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Dwarf Galaxy Rotation Curves. International Journal of Astronomy and Astrophysics, 12, 363-381.
https://doi.org/10.4236/ijaa.2022.124021
[22]  Boyanovsky, D., de Vega, H.J. and Sanchez, N.G. (2008) The Dark Matter Transfer Function: Free Streaming, Particle Statistics and Memory of Gravitational Clustering. Physical Review D, 78, Article ID: 063546.
https://doi.org/10.1103/PhysRevD.78.063546
[23]  White, M. and Croft, R.A.C. (2018) Suppressing Linear Power on Dwarf Galaxy Halo Scales. The Astrophysical Journal, 539, 497-504.
https://doi.org/10.1086/309273
[24]  Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford.
[25]  Tully, R.B. and Fisher, J.R. (1977) A New Method of Determining Distances to Galaxies. Astronomy and Astrophysics, 54, 661-673.
[26]  Markovič and Viel, M. (2013) Lyman-α Forest and Cosmic Weak Lensing in a Warm Dark Matter Universe. Cambridge University Press, Cambridge.
https://doi.org/10.1017/pasa.2013.43

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413