全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Auxetics in Biomedical Applications: A Review

DOI: 10.4236/jmmce.2023.112003, PP. 27-35

Keywords: Auxetics, Negative Poisson’s Ratio, Biomaterials, Biomedical Engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

Materials exhibiting auxetic properties have a negative Poisson’s ratio, which intrigued researchers to understand the behavior of auxetic structure. Several researchers focused on the different auxetic cell designs, while others focused on the auxetic applications. With the advance of additive manufacturing methods, computer-aided design and finite element analysis in recent decades, auxetics have been explored. One of the interesting applications is in the field of biomedical devices or implants, especially for certain natural biomedical organs such as tissues, certain ligaments that have auxetic properties. This paper is an overview of auxetic design approaches and biomedical applications.

References

[1]  Sanami, M., Ravirala, N., Alderson, K. and Alderson A. (2014) Auxetic Materials for Sports Applications. Procedia Engineering, 72, 453-458.
https://doi.org/10.1016/j.proeng.2014.06.079
[2]  Saxena, K.K., Das, R. and Calius, E.P. (2016) Three Decades of Auxetics Research—Materials with Negative Poisson’s Ratio: A Review. Advanced Engineering Materials, 18, 1847-1870.
https://doi.org/10.1002/adem.201600053
[3]  Pothier, P. Roufail, R. Malton, M. (2022) Unit Cell Modelling of Auxetic Structure. Journal of Minerals and Materials Characterization and Engineering, 10, 360-369.
https://doi.org/10.4236/jmmce.2022.104025
[4]  Meena, K. and Singamneni, S. (2019) A New Auxetic Structure with Significantly Reduced Stress Concentration Effects. Materials & Design, 173, Article ID: 107779.
https://doi.org/10.1016/j.matdes.2019.107779
[5]  Mir, M., Ali, M.N., Sami, J. and Ansari, U. (2014) Review of Mechanics and Applications of Auxetic Structures. Advances in Materials Science and Engineering, 2014, Article ID: 753496.
https://doi.org/10.1155/2014/753496
[6]  Zhu, Y., Luo, Y., Gao, D., Yu, C., Ren, X. and Zhang, C. (2022) In-Plane Elastic Properties of a Novel Re-Entrant Auxetic Honeycomb with Zigzag Inclined Ligaments. Engineering Structures, 268, Article ID: 114788.
https://doi.org/10.1016/j.engstruct.2022.114788
[7]  Kapnisi, M., Mansfield, C., Marijon, C., Guex, A.G., Perbellini, F., Bardi, I., Humphrey, E.J., Puetzer, J.L., Mawad, D., Koutsogeorgis, D.C., Stuckey, D.J., Terracciano, C.M., Harding, S.E. and Stevens, M.M. (2018) Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating Myocardial Infarction. Advanced Functional Materials, 28, Article ID: 1800618.
https://doi.org/10.1002/adfm.201800618
[8]  Ali, M.N., Busfield, J.J.C. and Rehman, I.U. (2014) Auxetic Oesophageal Stents: Structure and Mechanical Properties. Journal of Materials Science: Materials in Medicine, 25, 527-553.
https://doi.org/10.1007/s10856-013-5067-2
[9]  Leung, M.S., Yick, K., Sun, Y., Chow, L. and Ng. S. (2022) 3D Printed Auxetic Heel Pads for Patients with Diabetic Mellitus. Computers in Biology and Medicine, 146, Article ID: 105582.
https://doi.org/10.1016/j.compbiomed.2022.105582
[10]  Warner, J.J., Gillies, A.R., Hwang, H.H., Zhang, H., Lieber, R.L. and Chen, S. (2017) 3D-Printed Biomaterials with Regional Auxetic Properties. Journal of the Mechanical Behavior of Biomedical Materials, 76, 145-152.
https://doi.org/10.1016/j.jmbbm.2017.05.016
[11]  Mardling, P., Alderson, A., Jordan-Mahy, N. and Le Maitre, C.L. (2020) The Use of Auxetic Materials in Tissue Engineering. Biomaterials Science, 8, 2074-2083.
https://doi.org/10.1039/C9BM01928F
[12]  Tsegay, F., Hisham, M., Elsherif, M., Schiffer, A. and Butt, H. (2023) 3D Printing of pH Indicator Auxetic Hydrogel Skin Wound Dressing. Molecules, 28, Article 1339.
https://doi.org/10.3390/molecules28031339
[13]  Kopecek, J. (2007). Hydrogel Biomaterials: A Smart Future? Biomaterials, 28, 5185-5192.
https://doi.org/10.1016/j.biomaterials.2007.07.044
[14]  Masters, I.G. and Evans, K.E. (1996) Models for the Elastic Deformation of Honeycombs. Composite Structures, 35, 403-422.
https://doi.org/10.1016/S0263-8223(96)00054-2
[15]  Ajdary, R., Abidnejad, R., Lehtonen, J., Kuula, J., Raussi-Lehto, E., Kankuri, E., Tardy, B. and Rojas, O.J. (2022) Bacterial Nanocellulose Enables Auxetic Supporting Implants. Carbohydrate Polymers, 284, Article ID: 119198.
https://doi.org/10.1016/j.carbpol.2022.119198
[16]  Ali, M.N. and Rehman, I.U. (2015) Auxetic Polyurethane Stents and Stent-Grafts for the Palliative Treatment of Squamous Cell Carcinomas of the Proximal and Mid Oesophagus: A Novel Fabrication Route. Journal of Manufacturing Systems, 37, 375-395.
https://doi.org/10.1016/j.jmsy.2014.07.009
[17]  Yao, Y., Wang, L., Li, J., Tian, S., Zhang, M. and Fan, Y. (2020) A Novel Auxetic Structure Based Bone Screw Design: Tensile Mechanical Characterization and Pullout Fixation Strength Evaluation. Materials and Design, 188, Article ID: 108424.
https://doi.org/10.1016/j.matdes.2019.108424
[18]  Ghavidelnia, N., Bodaghi, M. and Hedayati, R. (2021) Femur Auxetic Meta-Implants with Tuned Micromotion Distribution. Materials, 14, Article 114.
https://doi.org/10.3390/ma14010114
[19]  Yao, Y., Yuan, H., Huang, H., Liu, J., Wang, L. and Fan, Y. (2021) Biomechanical Design and Analysis of Auxetic Pedicle Screw to Resist Loosening. Computers in Biology and Medicine, 133, Article ID: 104386.
https://doi.org/10.1016/j.compbiomed.2021.104386
[20]  Bonfanti, A. and Bhaskar, A. (2019) Elastic Stabilization of Wrinkles in Thin Films by Auxetic Microstructure. Extreme Mechanics Letters, 33, Article ID: 100556.
https://doi.org/10.1016/j.eml.2019.100556
[21]  Arjunan, A., Zahid, S., Baroutaji, A. and Robinson, J. (2021) 3D Printed Auxetic Nasopharyngeal Swabs for COVID-19 Sample Collection. Journal of the Mechanical Behavior of Biomedical Materials, 114, Article ID: 104175.
https://doi.org/10.1016/j.jmbbm.2020.104175
[22]  Gupta, V. and Chanda, A. (2023) Expansion Potential of Novel Skin Grafts Simulants with I-Shaped Auxetic Incisions. Biomedical Engineering Advances, 5, Article ID: 100071.
https://doi.org/10.1016/j.bea.2023.100071

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413