全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Epigenetic Signatures of Aging: A Comprehensive Study of Biomarker Discovery

DOI: 10.4236/aar.2023.122002, PP. 11-38

Keywords: Aging, Biomarkers, Epigenetics, Methylation, Geriatric Disease

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: Aging is a complex biological process that is associated with a decline in physiological functions and an increased risk of age-related diseases. Despite advances in molecular biology and genetics, the underlying mechanisms of aging remain largely unknown. Study: The identification of biomarkers of aging would provide a powerful tool for monitoring the effects of aging and for developing interventions to improve healthspan. Aging is associated with alterations in genetics, epigenetic marks, telomere shortening, cell senescence, and changes in the expression of genes involved in metabolism, inflammation, and DNA damage repair. Epigenetic changes, including modifications to DNA methylation and histone acetylation patterns, play a critical role in the aging process. As we age, these changes can lead to altered gene expression and contribute to the development of age-related diseases such as cancer, Alzheimer’s disease (AD) and cardiovascular disease (CVD). Conclusion: The discovery of aging biomarkers that are sensitive to these epigenetic changes has the potential to revolutionize our understanding of the aging process and inform the development of interventions to improve healthspan and extend lifespan.

References

[1]  Jaul, E. and Barron, J. (2017) Age-Related Diseases and Clinical and Public Health Implications for the 85 Years Old and Over Population. Frontiers in Public Health, 5, 335.
https://doi.org/10.3389/fpubh.2017.00335
[2]  Li, Z., et al. (2021) Aging and Age-Related Diseases: From Mechanisms to Therapeutic Strategies. Biogerontology, 22, 165-187.
https://doi.org/10.1007/s10522-021-09910-5
[3]  Liu, J.-K. (2022) Antiaging Agents: Safe Interventions to Slow Aging and Healthy Life Span Extension. Natural Products and Bioprospecting, 12, 18.
https://doi.org/10.1007/s13659-022-00339-y
[4]  Bravo-San Pedro, J.M. and Senovilla, L. (2013) Immunostimulatory Activity of Lifespan-Extending Agents. Aging, 5, 793-801.
https://doi.org/10.18632/aging.100619
[5]  Longo, V.D., Antebi, A., Bartke, A., Barzilai, N., Brown-Borg, H.M., Caruso, C., Curiel, T.J., Cabo, R., Franceschi, C., Gems, D., Ingram, D.K., Johnson, T.E., Kennedy, B.K., Kenyon, C., Klein, S., Kopchick, J.J., Lepperdinger, G., Madeo, F., Mirisola, M.G. and Mitchell, J.R. (2015) Interventions to Slow Aging in Humans: Are We Ready? Aging Cell, 14, 497-510.
https://doi.org/10.1111/acel.12338
[6]  Kirkwood, T.B.L. (2005) Understanding the Odd Science of Aging. Cell, 120, 437-447.
https://doi.org/10.1016/j.cell.2005.01.027
[7]  Yan, M., Sun, S., Xu, K., Huang, X., Dou, L., Pang, J., Tang, W., Shen, T. and Li, J. (2021) Cardiac Aging: From Basic Research to Therapeutics. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 9570325.
https://doi.org/10.1155/2021/9570325
[8]  Berben, L., Floris, G., Wildiers, H. and Hatse, S. (2021) Cancer and Aging: Two Tightly Interconnected Biological Processes. Cancers, 13, 1400.
https://doi.org/10.3390/cancers13061400
[9]  Wyss-Coray, T. (2016) Ageing, Neurodegeneration and Brain Rejuvenation. Nature, 539, 180-186.
https://doi.org/10.1038/nature20411
[10]  Waltz, M., Cadigan, R.J., Prince, A.E.R., Skinner, D. and Henderson, G.E. (2018) Age and Perceived Risks and Benefits of Preventive Genomic Screening. Genetics in Medicine, 20, 1038-1044.
https://doi.org/10.1038/gim.2017.206
[11]  Martin-Herranz, D.E., Aref-Eshghi, E., Bonder, M.J., Stubbs, T.M., Choufani, S., Weksberg, R., Stegle, O., Sadikovic, B., Reik, W. and Thornton, J.M. (2019) Screening for Genes That Accelerate the Epigenetic Aging Clock in Humans Reveals a Role for the H3K36 Methyltransferase NSD1. Genome Biology, 20, 146.
https://doi.org/10.1186/s13059-019-1753-9
[12]  Janssens, G.E., Lin, X.-X., Millan-Ariño, L., Kavšek, A., Sen, I., Seinstra, R.I., Stroustrup, N., Nollen, E.A.A. and Riedel, C.G. (2019) Transcriptomics-Based Screening Identifies Pharmacological Inhibition of Hsp90 as a Means to Defer Aging. Cell Reports, 27, 467-480.e6.
https://doi.org/10.1016/j.celrep.2019.03.044
[13]  Moaddel, R., Ubaida-Mohien, C., Tanaka, T., Lyashkov, A., Basisty, N., Schilling, B., Semba, R.D., Franceschi, C., Gorospe, M. and Ferrucci, L. (2021) Proteomics in Aging Research: A Roadmap to Clinical, Translational Research. Aging Cell, 20, e13325.
https://doi.org/10.1111/acel.13325
[14]  Whiting, C.C., Siebert, J., Newman, A.M., Du, H., Alizadeh, A.A., Goronzy, J., Weyand, C.M., Krishnan, E., Fathman, C.G. and Maecker, H.T. (2015) Large-Scale and Comprehensive Immune Profiling and Functional Analysis of Normal Human Aging. PLOS ONE, 10, e0133627.
https://doi.org/10.1371/journal.pone.0133627
[15]  Nguyen, H., Zarriello, S., Coats, A., Nelson, C., Kingsbury, C., Gorsky, A., Rajani, M., Neal, E.G. and Borlongan, C.V. (2019) Stem Cell Therapy for Neurological Disorders: A Focus on Aging. Neurobiology of Disease, 126, 85-104.
https://doi.org/10.1016/j.nbd.2018.09.011
[16]  Oh, J., Lee, Y.D. and Wagers, A.J. (2014) Stem Cell Aging: Mechanisms, Regulators and Therapeutic Opportunities. Nature Medicine, 20, 870-880.
https://doi.org/10.1038/nm.3651
[17]  Hamczyk, M.R., et al. (2022) Biological versus Chronological Aging: JACC Focus Seminar. Journal of the American College of Cardiology, 75, 919-930.
[18]  López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. and Kroemer, G. (2013) The Hallmarks of Aging. Cell, 153, 1194-1217.
https://doi.org/10.1016/j.cell.2013.05.039
[19]  Askarova, S., Umbayev, B., Masoud, A.-R., Kaiyrlykyzy, A., Safarova, Y., Tsoy, A., Olzhayev, F. and Kushugulova, A. (2020) The Links between the Gut Microbiome, Aging, Modern Lifestyle and Alzheimer’s Disease. Frontiers in Cellular and Infection Microbiology, 10, 104.
https://doi.org/10.3389/fcimb.2020.00104
[20]  Parrado, C., Mercado-Saenz, S., Perez-Davo, A., Gilaberte, Y., Gonzalez, S. and Juarranz, A. (2019) Environmental Stressors on Skin Aging. Mechanistic Insights. Frontiers in Pharmacology, 10, 759.
https://doi.org/10.3389/fphar.2019.00759
[21]  Yu, M., Zhang, H., Wang, B., Zhang, Y., Zheng, X., Shao, B., Zhuge, Q. and Jin, K. (2021) Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells, 10, 660.
https://doi.org/10.3390/cells10030660
[22]  Bird, A. (2002) DNA Methylation Patterns and Epigenetic Memory. Genes & Development, 16, 6-21.
https://doi.org/10.1101/gad.947102
[23]  Unnikrishnan, A., Freeman, W.M., Jackson, J., Wren, J.D., Porter, H. and Richardson, A. (2019) The Role of DNA Methylation in Epigenetics of Aging. Pharmacology & Therapeutics, 195, 172-185.
https://doi.org/10.1016/j.pharmthera.2018.11.001
[24]  Ciccarone, F., Tagliatesta, S., Caiafa, P. and Zampieri, M. (2018) DNA Methylation Dynamics in Aging: How Far Are We from Understanding the Mechanisms? Mechanisms of Ageing and Development, 174, 3-17.
https://doi.org/10.1016/j.mad.2017.12.002
[25]  Behzadi, P. and Ranjbar, R. (2018) DNA Microarray Technology and Bioinformatic Web Services. Acta Microbiologica et Immunologica Hungarica, 66, 19-30.
https://doi.org/10.1556/030.65.2018.028
[26]  Dang, K., Zhang, W., Jiang, S., Lin, X. and Qian, A. (2020) Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen, 9, 285-300.
https://doi.org/10.1002/open.201900326
[27]  Gong, T., Borgard, H., Zhang, Z., Chen, S., Gao, Z. and Deng, Y. (2022) Analysis and Performance Assessment of the Whole Genome Bisulfite Sequencing Data Workflow: Currently Available Tools and a Practical Guide to Advance DNA Methylation Studies. Small Methods, 6, Article ID: 2101251.
https://doi.org/10.1002/smtd.202101251
[28]  Yamazaki, J., Matsumoto, Y., Jelinek, J., Ishizaki, T., Maeda, S., Watanabe, K., Ishihara, G., Yamagishi, J. and Takiguchi, M. (2021) DNA Methylation Landscape of 16 Canine Somatic Tissues by Methylation-Sensitive Restriction Enzyme-Based Next Generation Sequencing. Scientific Reports, 11, Article No. 10005.
https://doi.org/10.1038/s41598-021-89279-0
[29]  Pei, J., van den Dungen, N.A.M., Asselbergs, F.W., Mokry, M. and Harakalova, M. (2022) Chromatin Immunoprecipitation Sequencing (ChIP-seq) Protocol for Small Amounts of Frozen Biobanked Cardiac Tissue. Methods in Molecular Biology, 2458, 97-111.
https://doi.org/10.1007/978-1-0716-2140-0_6
[30]  Kukurba, K.R. and Montgomery, S.B. (2015) RNA Sequencing and Analysis. Cold Spring Harbor Protocols, 2015, 951-969.
https://doi.org/10.1101/pdb.top084970
[31]  Grandi, F.C., Modi, H., Kampman, L. and Corces, M.R. (2022) Chromatin Accessibility Profiling by ATAC-seq. Nature Protocols, 17, 1518-1552.
https://doi.org/10.1038/s41596-022-00692-9
[32]  Saul, D. and Kosinsky, R.L. (2021) Epigenetics of Aging and Aging-Associated Diseases. International Journal of Molecular Sciences, 22, 401.
https://doi.org/10.3390/ijms22010401
[33]  Chen, C., Zhou, M., Ge, Y. and Wang, X. (2020) SIRT1 and Aging Related Signaling Pathways. Mechanisms of Ageing and Development, 187, Article ID: 111215.
https://doi.org/10.1016/j.mad.2020.111215
[34]  Yan, J., Luo, A., Sun, R., Tang, X., Zhao, Y., Zhang, J., Zhou, B., Zheng, H., Yu, H. and Li, S. (2020) Resveratrol Mitigates Hippocampal Tau Acetylation and Cognitive Deficit by Activation SIRT1 in Aged Rats Following Anesthesia and Surgery. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 4635163.
https://doi.org/10.1155/2020/4635163
[35]  Salminen, A., Kaarniranta, K. and Kauppinen, A. (2021) Insulin/IGF-1 Signaling Promotes Immunosuppression via the STAT3 Pathway: Impact on the Aging Process and Age-Related Diseases. Inflammation Research, 70, 1043-1061.
https://doi.org/10.1007/s00011-021-01498-3
[36]  Papadopoli, D., Boulay, K., Kazak, L., Pollak, M., Mallette, F., Topisirovic, I. and Hulea, L. (2019) mTOR as a Central Regulator of Lifespan and Aging. F1000Research, 8, 998.
https://doi.org/10.12688/f1000research.17196.1
[37]  Du, S. and Zheng, H. (2021) Role of FoxO Transcription Factors in Aging and Age-Related Metabolic and Neurodegenerative Diseases. Cell & Bioscience, 11, 188.
https://doi.org/10.1186/s13578-021-00700-7
[38]  Chakravarti, D., LaBella, K.A. and DePinho, R.A. (2021) Telomeres: History, Health, and Hallmarks of Aging. Cell, 184, 306-322.
https://doi.org/10.1016/j.cell.2020.12.028
[39]  Di Micco, R., Krizhanovsky, V., Baker, D. and d’Adda di Fagagna, F. (2020) Cellular Senescence in Ageing: From Mechanisms to Therapeutic Opportunities. Nature Reviews Molecular Cell Biology, 22, 75-95.
https://doi.org/10.1038/s41580-020-00314-w
[40]  Kane, A.E. and Sinclair, D.A. (2019) Epigenetic Changes during Aging and Their Reprogramming Potential. Critical Reviews in Biochemistry and Molecular Biology, 54, 61-83.
[41]  Hajam, Y.A., Rani, R., Ganie, S.Y., Sheikh, T.A., Javaid, D., Qadri, S.S., Pramodh, S., Alsulimani, A., Alkhanani, M.F., Harakeh, S., Hussain, A., Haque, S. and Reshi, M.S. (2022) Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells, 11, 552.
https://doi.org/10.3390/cells11030552
[42]  Wu, M., et al. (2021) Potential Implications of Polyphenols on Aging Considering Oxidative Stress, Inflammation, Autophagy, and Gut Microbiota. Critical Reviews in Food Science and Nutrition, 61, 2175-2193.
[43]  Haas, R.H. (2019) Mitochondrial Dysfunction in Aging and Diseases of Aging. Biology, 8, 48.
https://doi.org/10.3390/biology8020048
[44]  Sies, H. (2020) Oxidative Stress: Concept and Some Practical Aspects. Antioxidants, 9, 852.
https://doi.org/10.3390/antiox9090852
[45]  Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D.W., Fasano, A., Miller, G.W., Miller, A.H., Mantovani, A., Weyand, C.M., Barzilai, N., Goronzy, J.J., Rando, T.A., Effros, R.B., Lucia, A., Kleinstreuer, N. and Slavich, G.M. (2019) Chronic Inflammation in the Etiology of Disease across the Life Span. Nature Medicine, 25, 1822-1832.
https://doi.org/10.1038/s41591-019-0675-0
[46]  Wheeler, H.E. and Kim, S.K. (2021) Genetics and Genomics of Human Ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 43-50.
[47]  Wang, J., Zhang, S., Wang, Y., Chen, L. and Zhang, X.-S. (2009) Disease-Aging Network Reveals Significant Roles of Aging Genes in Connecting Genetic Diseases. PLoS Computational Biology, 5, e1000521.
https://doi.org/10.1371/journal.pcbi.1000521
[48]  Yao, Y., Liu, L., Guo, G., Zeng, Y. and Ji, J.S. (2021) Interaction of Sirtuin 1 (SIRT1) Candidate Longevity Gene and Particulate Matter (PM2.5) on All-Cause Mortality: A Longitudinal Cohort Study in China. Environmental Health, 20, 25.
https://doi.org/10.1186/s12940-021-00718-x
[49]  Morris, B.J., Willcox, D.C., Donlon, T.A. and Willcox, B.J. (2015) FOXO3: A Major Gene for Human Longevity—A Mini-Review. Gerontology, 61, 515-525.
https://doi.org/10.1159/000375235
[50]  Sanese, Forte, G., Disciglio, V., Grossi, V. and Simone, C. (2019) FOXO3 on the Road to Longevity: Lessons from SNPs and Chromatin Hubs. Computational and Structural Biotechnology Journal, 17, 737-745.
https://doi.org/10.1016/j.csbj.2019.06.011
[51]  Zhao, Y. and Liu, Y.-S. (2021) Longevity Factor FOXO3: A Key Regulator in Aging-Related Vascular Diseases. Frontiers in Cardiovascular Medicine, 8, Article ID: 778674.
https://doi.org/10.3389/fcvm.2021.778674
[52]  Colebatch, A.J., Dobrovic, A. and Cooper, W.A. (2019) TERT Gene: Its Function and Dysregulation in Cancer. Journal of Clinical Pathology, 72, 281-284.
https://doi.org/10.1136/jclinpath-2018-205653
[53]  Feng, Z., Hu, W., Teresky, A.K., Hernando, E., Cordon-Cardo, C. and Levine, A.J. (2007) Declining p53 Function in the Aging Process: A Possible Mechanism for the Increased Tumor Incidence in Older Populations. Proceedings of the National Academy of Sciences, 104, 16633-16638.
https://doi.org/10.1073/pnas.0708043104
[54]  Wang, K., Liu, H., Hu, Q., Wang, L., Liu, J., Zheng, Z., Zhang, W., Ren, J., Zhu, F. and Liu, G.-H. (2022) Epigenetic Regulation of Aging: Implications for Interventions of Aging and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 374.
https://doi.org/10.1038/s41392-022-01211-8
[55]  Li, A., Koch, Z. and Ideker, T. (2022) Epigenetic Aging: Biological Age Prediction and Informing a Mechanistic Theory of Aging. Journal of Internal Medicine, 292, 733-744.
https://doi.org/10.1111/joim.13533
[56]  Zhang, W., Qu, J., Liu, G.-H. and Belmonte, J.C.I. (2020) The Ageing Epigenome and Its Rejuvenation. Nature Reviews Molecular Cell Biology, 21, 137-150.
https://doi.org/10.1038/s41580-019-0204-5
[57]  Xiao, F.-H., Wang, H.-T. and Kong, Q.-P. (2019) Dynamic DNA Methylation during Aging: A “Prophet” of Age-Related Outcomes. Frontiers in Genetics, 10, Article No. 107.
https://doi.org/10.3389/fgene.2019.00107
[58]  Moore, L.D., Le, T. and Fan, G. (2012) DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38, 23-38.
https://doi.org/10.1038/npp.2012.112
[59]  Jin, B.L., Li, Y.J. and Robertson, K.D. (2011) DNA Methylation: Superior or Subordinate in the Epigenetic Hierarchy? Genes & Cancer, 2, 607-617.
[60]  Madrigano, J., et al. (2023) Aging and Epigenetics: Longitudinal Changes in Gene-Specific DNA Methylation. Epigenetics, 7, 63-70.
[61]  Franzago, M., Pilenzi, L., Di Rado, S., Vitacolonna, E. and Stuppia, L. (2022) The Epigenetic Aging, Obesity, and Lifestyle. Frontiers in Cell and Developmental Biology, 10, Article ID: 985274.
https://doi.org/10.3389/fcell.2022.985274
[62]  Li, X., Hui, A.-M., Sun, L., Hasegawa, K., Torzilli, G., Minagawa, M., Takayama, T. and Makuuchi, M. (2004) p16INK4A Hypermethylation Is Associated with Hepatitis Virus Infection, Age, and Gender in Hepatocellular Carcinoma. Clinical Cancer Research, 10, 7484-7489.
https://doi.org/10.1158/1078-0432.CCR-04-1715
[63]  Boltze, C., Zack, S., Quednow, C., Bettge, S., Roessner, A. and Schneider-Stock, R. (2003) Hypermethylation of the CDKN2/p16INK4A Promotor in Thyroid Carcinogenesis. Pathology—Research and Practice, 199, 399-404.
https://doi.org/10.1078/0344-0338-00436
[64]  Duan, R., Fu, Q., Sun, Y. and Li, Q. (2022) Epigenetic Clock: A Promising Biomarker and Practical Tool in Aging. Ageing Research Reviews, 81, Article ID: 101743.
https://doi.org/10.1016/j.arr.2022.101743
[65]  Oblak, L., van der Zaag, J., Higgins-Chen, A.T., Levine, M.E. and Boks, M.P. (2021) A Systematic Review of Biological, Social and Environmental Factors Associated with Epigenetic Clock Acceleration. Ageing Research Reviews, 69, Article ID: 101348.
https://doi.org/10.1016/j.arr.2021.101348
[66]  Horvath, S. and Raj, K. (2018) DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing. Nature Reviews Genetics, 19, 371-384.
https://doi.org/10.1038/s41576-018-0004-3
[67]  Ryan, J., Wrigglesworth, J., Loong, J., Fransquet, D. and Woods, R.L. (2019) A Systematic Review and Meta-Analysis of Environmental, Lifestyle, and Health Factors Associated with DNA Methylation Age. The Journals of Gerontology: Series A, 75, 481-494.
https://doi.org/10.1093/gerona/glz099
[68]  Partridge, L., Fuentealba, M. and Kennedy, B.K. (2020) The Quest to Slow Ageing through Drug Discovery. Nature Reviews Drug Discovery, 19, 513-532.
https://doi.org/10.1038/s41573-020-0067-7
[69]  Kane, A.E. and Sinclair, D.A. (2019) Epigenetic Changes during Aging and Their Reprogramming Potential. Critical Reviews in Biochemistry and Molecular Biology, 54, 61-83.
[70]  Reale, A., Tagliatesta, S., Zardo, G. and Zampieri, M. (2022) Counteracting Aged DNA Methylation States to Combat Ageing and Age-Related Diseases. Mechanisms of Ageing and Development, 206, Article ID: 111695.
https://doi.org/10.1016/j.mad.2022.111695
[71]  Fang, Z., Wang, X., Sun, X., Hu, W. and Miao, Q.R. (2021) The Role of Histone Protein Acetylation in Regulating Endothelial Function. Frontiers in Cell and Developmental Biology, 9, Article ID: 672447.
https://doi.org/10.3389/fcell.2021.672447
[72]  Eberharter, A. and Becker, B. (2002) Histone Acetylation: A Switch between Repressive and Permissive Chromatin. EMBO Reports, 3, 224-229.
https://doi.org/10.1093/embo-reports/kvf053
[73]  Yi, S.-J. and Kim, K. (2020) New Insights into the Role of Histone Changes in Aging. International Journal of Molecular Sciences, 21, 8241.
https://doi.org/10.3390/ijms21218241
[74]  Stilling, R.M. and Fischer, A. (2011) The Role of Histone Acetylation in Age-Associated Memory Impairment and Alzheimer’s Disease. Neurobiology of Learning and Memory, 96, 19-26.
https://doi.org/10.1016/j.nlm.2011.04.002
[75]  Yu, R., Cao, X., Sun, L., Zhu, J., Wasko, B.M., Liu, W., Crutcher, E., Liu, H., Jo, M.C., Qin, L., Kaeberlein, M., Han, Z. and Dang, W. (2021) Inactivating Histone Deacetylase HDA Promotes Longevity by Mobilizing Trehalose Metabolism. Nature Communications, 12, Article No. 1981.
https://doi.org/10.1038/s41467-021-22257-2
[76]  Pasyukova, E.G. and Vaiserman, A.M. (2017) HDAC Inhibitors: A New Promising Drug Class in Anti-Aging Research. Mechanisms of Ageing and Development, 166, 6-15.
https://doi.org/10.1016/j.mad.2017.08.008
[77]  Shukla, S. and Tekwani, B.L. (2020) Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Frontiers in Pharmacology, 11, Article No. 537.
https://doi.org/10.3389/fphar.2020.00537
[78]  Eckschlager, T., Plch, J., Stiborova, M. and Hrabeta, J. (2017) Histone Deacetylase Inhibitors as Anticancer Drugs. International Journal of Molecular Sciences, 18, 1414.
https://doi.org/10.3390/ijms18071414
[79]  Jiang, H., Ju, Z. and Rudolph, K.L. (2007) Telomere Shortening and Ageing. Zeitschrift für Gerontologie und Geriatrie, 40, 314-324.
https://doi.org/10.1007/s00391-007-0480-0
[80]  Vaiserman, A. and Krasnienkov, D. (2021) Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Frontiers in Genetics, 11, Article ID: 630186.
https://doi.org/10.3389/fgene.2020.630186
[81]  Zvereva, M.I., Shcherbakova, D.M. and Dontsova, O.A. (2010) Telomerase: Structure, Functions, and Activity Regulation. Biochemistry (Moscow), 75, 1563-1583.
https://doi.org/10.1134/S0006297910130055
[82]  Roake, C.M. and Artandi, S.E. (2020) Regulation of Human Telomerase in Homeostasis and Disease. Nature Reviews Molecular Cell Biology, 21, 384-397.
https://doi.org/10.1038/s41580-020-0234-z
[83]  Logeswaran, D. and Chen, J.J.-L. (2019) Effects of Telomerase Activation. In: Gu, D. and Dupre, M.E., Eds., Encyclopedia of Gerontology and Population Aging, Springer, Berlin, 1-8.
https://doi.org/10.1007/978-3-319-69892-2_42-1
[84]  de Jesus, B.B. and Blasco, M.A. (2012) Potential of Telomerase Activation in Extending Health Span and Longevity. Current Opinion in Cell Biology, 24, 739-743.
https://doi.org/10.1016/j.ceb.2012.09.004
[85]  Guterres, A.N. and Villanueva, J. (2020) Targeting Telomerase for Cancer Therapy. Oncogene, 39, 5811-5824.
https://doi.org/10.1038/s41388-020-01405-w
[86]  Jafri, M.A., Ansari, S.A., Alqahtani, M.H. and Shay, J.W. (2016) Roles of Telomeres and Telomerase in Cancer, and Advances in Telomerase-Targeted Therapies. Genome Medicine, 8, Article No. 69.
https://doi.org/10.1186/s13073-016-0324-x
[87]  Robinson, N.J. and Schiemann, W.P. (2022) Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers, 14, 808.
https://doi.org/10.3390/cancers14030808
[88]  Shi, Y., Zhang, Y., Zhang, L., Ma, J.-L., Zhou, T., Li, Z.-X., Liu, W.-D., Li, W.-Q., Deng, D.-J., You, W.-C. and Pan, K.-F. (2019) Telomere Length of Circulating Cell-Free DNA and Gastric Cancer in a Chinese Population at High-Risk. Frontiers in Oncology, 9, Article No. 1434.
https://doi.org/10.3389/fonc.2019.01434
[89]  Wu, X. and Tanaka, H. (2015) Aberrant Reduction of Telomere Repetitive Sequences in Plasma Cell-Free DNA for Early Breast Cancer Detection. Oncotarget, 6, 29795-29807.
https://doi.org/10.18632/oncotarget.5083
[90]  van Deursen, J.M. (2014) The Role of Senescent Cells in Ageing. Nature, 509, 439-446.
https://doi.org/10.1038/nature13193
[91]  McHugh, D. and Gil, J. (2017) Senescence and Aging: Causes, Consequences, and Therapeutic Avenues. Journal of Cell Biology, 217, 65-77.
https://doi.org/10.1083/jcb.201708092
[92]  Chaib, S., Tchkonia, T. and Kirkland, J.L. (2022) Cellular Senescence and Senolytics: The Path to the Clinic. Nature Medicine, 28, 1556-1568.
https://doi.org/10.1038/s41591-022-01923-y
[93]  Novais, E.J., Tran, V.A., Johnston, S.N., Darris, K.R., Roupas, A.J., Sessions, G.A., Shapiro, I.M., Diekman, B.O. and Risbud, M.V. (2021) Long-Term Treatment with Senolytic Drugs Dasatinib and Quercetin Ameliorates Age-Dependent Intervertebral Disc Degeneration in Mice. Nature Communications, 12, Article No. 5213.
https://doi.org/10.1038/s41467-021-25453-2
[94]  Mylonas, A. and O’Loghlen, A. (2022) Cellular Senescence and Ageing: Mechanisms and Interventions. Frontiers in Aging, 3, Article ID: 866718.
https://doi.org/10.3389/fragi.2022.866718
[95]  Hofer, S.J., Davinelli, S., Bergmann, M., Scapagnini, G. and Madeo, F. (2021) Caloric Restriction Mimetics in Nutrition and Clinical Trials. Frontiers in Nutrition, 8, Article ID: 717343.
https://doi.org/10.3389/fnut.2021.717343
[96]  Schally, A.V., Zhang, X., Cai, R., Hare, J.M., Granata, R. and Bartoli, M. (2019) Actions and Potential Therapeutic Applications of Growth Hormone-Releasing Hormone Agonists. Endocrinology, 160, 1600-1612.
https://doi.org/10.1210/en.2019-00111
[97]  Zemel, M.B. (2021) Modulation of Energy Sensing by Leucine Synergy with Natural Sirtuin Activators: Effects on Health Span. Journal of Medicinal Food, 23, 1129-1135.
[98]  Dumas, S.N. and Lamming, D.W. (2019) Next Generation Strategies for Geroprotection via mTORC1 Inhibition. The Journals of Gerontology: Series A, 75, 14-23.
https://doi.org/10.1093/gerona/glz056
[99]  Balasubramanian, P., Howell, R. and Anderson, R.M. (2017) Aging and Caloric Restriction Research: A Biological Perspective with Translational Potential. EBioMedicine, 21, 37-44.
https://doi.org/10.1016/j.ebiom.2017.06.015
[100]  Redmancorresponding, L.M. and Ravussin, E. (2021) Caloric Restriction in Humans: Impact on Physiological, Psychological, and Behavioral Outcomes. Antioxidants & Redox Signaling, 14, 275-287.
[101]  Duran-Ortiz, S., List, E.O., Basu, R. and Kopchick, J.J. (2021) Extending Lifespan by Modulating the Growth Hormone/Insulin-Like Growth Factor-1 Axis: Coming of Age. Pituitary, 24, 438-456.
https://doi.org/10.1007/s11102-020-01117-0
[102]  Salehi, B., Mishra, A., Nigam, M., Sener, B., Kilic, M., Sharifi-Rad, M., Fokou, P., Martins, N. and Sharifi-Rad, J. (2018) Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines, 6, 91.
https://doi.org/10.3390/biomedicines6030091
[103]  Zhang, L.-X., Li, C.-X., Kakar, M.U., Khan, M.S., Wu, F., Amir, R.M., Dai, D.-F., Naveed, M., Li, Q.-Y., Saeed, M., Shen, J.-Q., Rajput, S.A. and Li, J.-H. (2021) Resveratrol (RV): A Pharmacological Review and Call for Further Research. Biomedicine & Pharmacotherapy, 143, Article ID: 112164.
https://doi.org/10.1016/j.biopha.2021.112164
[104]  Wallerath, T., Deckert, G., Ternes, T., Anderson, H., Li, H., Witte, K. and Förstermann, U. (2002) Resveratrol, a Polyphenolic Phytoalexin Present in Red Wine, Enhances Expression and Activity of Endothelial Nitric Oxide Synthase. Circulation, 106, 1652-1658.
https://doi.org/10.1161/01.CIR.0000029925.18593.5C
[105]  Low, K.C. and Tergaonkar, V. (2013) Telomerase: Central Regulator of All of the Hallmarks of Cancer. Trends in Biochemical Sciences, 38, 426-434.
https://doi.org/10.1016/j.tibs.2013.07.001
[106]  Zhou, L., Li, M., Chai, Z., Zhang, J., Cao, K., Deng, L., Liu, Y., Jiao, C., Zou, G.-M., Wu, J. and Han, F. (2022) Anticancer Effects and Mechanisms of Astragaloside IV (Review). Oncology Reports, 49, Article No. 5.
https://doi.org/10.3892/or.2022.8442
[107]  Tsai, S.-J. (2019) Huperzine-A, a Versatile Herb, for the Treatment of Alzheimer’s Disease. Journal of the Chinese Medical Association, 82, 750-751.
https://doi.org/10.1097/JCMA.0000000000000151
[108]  Yu, Y., Zhou, L., Yang, Y. and Liu, Y. (2018) Cycloastragenol: An Exciting Novel Candidate for Age Associated Diseases. Experimental and Therapeutic Medicine, 16, 2175-2182.
https://doi.org/10.3892/etm.2018.6501
[109]  Alshinnawy, A.S., El-Sayed, W.M., Sayed, A.A., Salem, A.M. and Taha, A.M. (2021) Telomerase Activator-65 and Pomegranate Peel Improved the Health Status of the Liver in Aged Rats; Multi-Targets Involved. Iranian Journal of Basic Medical Sciences, 24, 842-850.
[110]  Sharma, A.K., Roberts, R.L., Benson, R.D., Pierce, J.L., Yu, K., Hamrick, M.W. and McGee-Lawrence, M.E. (2020) The Senolytic Drug Navitoclax (ABT-263) Causes Trabecular Bone Loss and Impaired Osteoprogenitor Function in Aged Mice. Frontiers in Cell and Developmental Biology, 8, 354.
https://doi.org/10.3389/fcell.2020.00354
[111]  Krzystyniak, A., Wesierska, M., Petrazzo, G., Gadecka, A., Dudkowska, M., Bielak-Zmijewska, A., Mosieniak, G., Figiel, I., Wlodarczyk, J. and Sikora, E. (2022) Combination of Dasatinib and Quercetin Improves Cognitive Abilities in Aged Male Wistar Rats, Alleviates Inflammation and Changes Hippocampal Synaptic Plasticity and Histone H3 Methylation Profile. Aging, 14, 572-595.
https://doi.org/10.18632/aging.203835
[112]  Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N.E., Ding, S., Feng, W., Luo, Y., Wang, X., Aykin-Burns, N., Krager, K., Ponnappan, U., Hauer-Jensen, M., Meng, A. and Zhou, D. (2015) Clearance of Senescent Cells by ABT263 Rejuvenates Aged Hematopoietic Stem Cells in Mice. Nature Medicine, 22, 78-83.
https://doi.org/10.1038/nm.4010
[113]  Zhang, C., Xie, Y., Chen, H., Lv, L., Yao, J., Zhang, M., Xia, K., Feng, X., Li, Y., Liang, X., Sun, X., Deng, C. and Liu, G. (2020) FOXO4-DRI Alleviates Age-Related Testosterone Secretion Insufficiency by Targeting Senescent Leydig Cells in Aged Mice. Aging, 12, 1272-1284.
https://doi.org/10.18632/aging.102682
[114]  Reiten, O.K., Wilvang, M.A., Mitchell, S.J., Hu, Z. and Fang, E.F. (2021) Preclinical and Clinical Evidence of NAD+ Precursors in Health, Disease, and Ageing. Mechanisms of Ageing and Development, 199, Article ID: 111567.
https://doi.org/10.1016/j.mad.2021.111567
[115]  Cheng, Y., et al. (2019) Targeting Epigenetic Regulators for Cancer Therapy: Mechanisms and Advances in Clinical Trials. Signal Transduction and Targeted Therapy, 4, 1-39.
https://doi.org/10.1038/s41392-019-0095-0
[116]  Giri, A.K. and Aittokallio, T. (2019) DNMT Inhibitors Increase Methylation in the Cancer Genome. Frontiers in Pharmacology, 10, Article No. 385.
https://www.frontiersin.org/articles/10.3389/fphar.2019.00385
https://doi.org/10.3389/fphar.2019.00385
[117]  Xu, W.S., Parmigiani, R.B. and Marks, A. (2007) Histone Deacetylase Inhibitors: Molecular Mechanisms of Action. Oncogene, 26, 5541-5552.
https://doi.org/10.1038/sj.onc.1210620
[118]  Reuter, J.A., Spacek, D.V. and Snyder, M.P. (2015) High-Throughput Sequencing Technologies. Molecular Cell, 58, 586-597.
https://doi.org/10.1016/j.molcel.2015.05.004
[119]  Wu, D.-Y., Bittencourt, D., Stallcup, M.R. and Siegmund, K.D. (2015) Identifying Differential Transcription Factor Binding in ChIP-seq. Frontiers in Genetics, 6, Article No. 169.
https://doi.org/10.3389/fgene.2015.00169
[120]  Muhammad, I.I., Kong, S.L., Akmar Abdullah, S.N. and Munusamy, U. (2019) RNA-seq and ChIP-seq as Complementary Approaches for Comprehension of Plant Transcriptional Regulatory Mechanism. International Journal of Molecular Sciences, 21, 167.
https://doi.org/10.3390/ijms21010167
[121]  Hong, M., Tao, S., Zhang, L., Diao, L.-T., Huang, X., Huang, S., Xie, S.-J., Xiao, Z.-D. and Zhang, H. (2020) RNA Sequencing: New Technologies and Applications in Cancer Research. Journal of Hematology & Oncology, 13, Article No. 166.
https://doi.org/10.1186/s13045-020-01005-x
[122]  Yan, F., Powell, D.R., Curtis, D.J. and Wong, N.C. (2020) From Reads to Insight: A Hitchhiker’s Guide to ATAC-seq Data Analysis. Genome Biology, 21, Article No. 22.
https://doi.org/10.1186/s13059-020-1929-3
[123]  Zhou, L., Ng, H.K., Drautz-Moses, D.I., Schuster, S.C., Beck, S., Kim, C., Chambers, J.C. and Loh, M. (2019) Systematic Evaluation of Library Preparation Methods and Sequencing Platforms for High-Throughput Whole Genome Bisulfite Sequencing. Scientific Reports, 9, Article No. 10383.
https://doi.org/10.1038/s41598-019-46875-5
[124]  Bonora, G., Rubbi, L., Morselli, M., Ma, F., Chronis, C., Plath, K. and Pellegrini, M. (2019) DNA Methylation Estimation Using Methylation-Sensitive Restriction Enzyme Bisulfite Sequencing (MREBS). PLOS ONE, 14, e0214368.
https://doi.org/10.1371/journal.pone.0214368
[125]  Ma, F., Jiang, S. and Zhang, C.-Y. (2019) Recent Advances in Histone Modification and Histone Modifying Enzyme Assays. Expert Review of Molecular Diagnostics, 19, 27-36.
[126]  Lafontaine, D.L., Yang, L., Dekker, J. and Gibcus, J.H. (2021) Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture. Current Protocols, 1, e198.
https://doi.org/10.1002/cpz1.198
[127]  Arneson, A., Haghani, A., Thompson, M.J., Pellegrini, M., Kwon, S.B., Vu, H., Maciejewski, E., Yao, M., Li, C.Z., Lu, A.T., Morselli, M., Rubbi, L., Barnes, B., Hansen, K.D., Zhou, W., Breeze, C.E., Ernst, J. and Horvath, S. (2022) A Mammalian Methylation Array for Profiling Methylation Levels at Conserved Sequences. Nature Communications, 13, Article No. 783.
https://doi.org/10.1038/s41467-022-28355-z
[128]  Liu, Y., Weng, W., Gao, R. and Liu, Y. (2019) New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 4598167.
https://doi.org/10.1155/2019/4598167
[129]  Nanayakkara, N., Curtis, A.J., Heritier, S., Gadowski, A.M., Pavkov, M.E., Kenealy, T., Owens, D.R., Thomas, R.L., Song, S., Wong, J., Chan, J.C.-N., Luk, A.O.-Y., Penno, G., Ji, L., Mohan, V., Amutha, A., Romero-Aroca, P., Gasevic, D., Magliano, D.J. and Teede, H.J. (2020) Impact of Age at Type 2 Diabetes Mellitus Diagnosis on Mortality and Vascular Complications: Systematic Review and Meta-Analyses. Diabetologia, 64, 275-287.
https://doi.org/10.1007/s00125-020-05319-w
[130]  Driban, J.B., Harkey, M.S., Liu, S.-H., Salzler, M. and McAlindon, T.E. (2020) Osteoarthritis and Aging: Young Adults with Osteoarthritis. Current Epidemiology Reports, 7, 9-15.
https://doi.org/10.1007/s40471-020-00224-7
[131]  Breijyeh, Z. and Karaman, R. (2020) Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules, 25, 5789.
https://doi.org/10.3390/molecules25245789
[132]  Sengoku, R. (2019) Aging and Alzheimer’s Disease Pathology. Neuropathology, 40, 22-29.
https://doi.org/10.1111/neup.12626
[133]  Saddiki, H., Fayosse, A., Cognat, E., Sabia, S., Engelborghs, S., Wallon, D., Alexopoulos, P., Blennow, K., Zetterberg, H., Parnetti, L., Zerr, I., Hermann, P., Gabelle, A., Boada, M., Orellana, A., de Rojas, I., Lilamand, M., Bjerke, M., Van Broeckhoven, C. and Farotti, L. (2020) Age and the Association between Apolipoprotein E Genotype and Alzheimer Disease: A Cerebrospinal Fluid Biomarker-Based Case-Control Study. PLOS Medicine, 17, e1003289.
https://doi.org/10.1371/journal.pmed.1003289
[134]  Han, J., Park, H., Maharana, C., Gwon, A-Ryeong., Park, J., Baek, S.H., Bae, H.-G., Cho, Y., Kim, H.K., Sul, J.H., Lee, J., Kim, E., Kim, J., Cho, Y., Park, S., Palomera, L.F., Arumugam, T.V., Mattson, M.P. and Jo, D.-G. (2021) Alzheimer’s Disease-Causing Presenilin-1 Mutations Have Deleterious Effects on Mitochondrial Function. Theranostics, 11, 8855-8873.
https://doi.org/10.7150/thno.59776
[135]  Galla, L., Redolfi, N., Pozzan, T., Pizzo, P. and Greotti, E. (2020) Intracellular Calcium Dysregulation by the Alzheimer’s Disease-Linked Protein Presenilin 2. International Journal of Molecular Sciences, 21, 770.
https://doi.org/10.3390/ijms21030770
[136]  Mitsumori, R., Sakaguchi, K., Shigemizu, D., Mori, T., Akiyama, S., Ozaki, K., Niida, S. and Shimoda, N. (2020) Lower DNA Methylation Levels in CpG Island Shores of CR1, CLU, and PICALM in the Blood of Japanese Alzheimer’s Disease Patients. PLOS ONE, 15, e0239196.
https://doi.org/10.1371/journal.pone.0239196
[137]  Fratiglioni, L., Marseglia, A. and Dekhtyar, S. (2020) Ageing without Dementia: Can Stimulating Psychosocial and Lifestyle Experiences Make a Difference? The Lancet Neurology, 19, 533-543.
https://doi.org/10.1016/S1474-4422(20)30039-9
[138]  McGrattan, A.M., McGuinness, B., McKinley, M.C., Kee, F., Passmore, P., Woodside, J.V. and McEvoy, C.T. (2019) Diet and Inflammation in Cognitive Ageing and Alzheimer’s Disease. Current Nutrition Reports, 8, 53-65.
https://doi.org/10.1007/s13668-019-0271-4
[139]  Bray, F., Laversanne, M., Weiderpass, E. and Soerjomataram, I. (2021) The Ever-Increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide. Cancer, 127, 3029-3030.
https://doi.org/10.1002/cncr.33587
[140]  Laconi, E., Marongiu, F. and DeGregori, J. (2020) Cancer as a Disease of Old Age: Changing Mutational and Microenvironmental Landscapes. British Journal of Cancer, 122, 943-952.
https://doi.org/10.1038/s41416-019-0721-1
[141]  Marbun, V.M.G., Erlina, L. and Lalisang, T.J.M. (2022) Genomic Landscape of Pathogenic Mutation of APC, KRAS, TP53, PIK3CA, and MLH1 in Indonesian Colorectal Cancer. PLOS ONE, 17, e0267090.
https://doi.org/10.1371/journal.pone.0267090
[142]  Madakashira, B.P. and Sadler, K.C. (2017) DNA Methylation, Nuclear Organization, and Cancer. Frontiers in Genetics, 8, Article No. 76.
https://www.frontiersin.org/articles/10.3389/fgene.2017.00076
https://doi.org/10.3389/fgene.2017.00076
[143]  Pfeifer, G.P. (2018) Defining Driver DNA Methylation Changes in Human Cancer. International Journal of Molecular Sciences, 19, 1166.
https://doi.org/10.3390/ijms19041166
[144]  Tang, Q., Cheng, J., et al. (2016) Blood-Based DNA Methylation as Biomarker for Breast Cancer: A Systematic Review. Clinical Epigenetics, 8, 115.
https://doi.org/10.1186/s13148-016-0282-6
[145]  Nassar, F.J., et al. (2021) Methylated Circulating Tumor DNA as a Biomarker for Colorectal Cancer Diagnosis, Prognosis, and Prediction. Clinical Epigenetics, 13, 111.
https://doi.org/10.1186/s13148-021-01095-5
[146]  Wang, Y., et al. (2007) Identification of Epigenetic Aberrant Promoter Methylation of RASSF1A in Serum DNA and Its Clinicopathological Significance in Lung Cancer. Lung Cancer, 56, 289-294.
https://doi.org/10.1016/j.lungcan.2006.12.007
[147]  Krittanawong, C., Khawaja, M., Rosenson, R.S., Amos, C.I., Nambi, V., Lavie, C.J. and Virani, S.S. (2022) Association of PCSK9 Variants with the Risk of Atherosclerotic Cardiovascular Disease and Variable Responses to PCSK9 Inhibitor Therapy. Current Problems in Cardiology, 47, Article ID: 101043.
https://doi.org/10.1016/j.cpcardiol.2021.101043
[148]  Wagner, N. and Wagner, K.-D. (2023) Pharmacological Utility of PPAR Modulation for Angiogenesis in Cardiovascular Disease. International Journal of Molecular Sciences, 24, 2345.
https://doi.org/10.3390/ijms24032345
[149]  Balcerzyk-Matić, A., Nowak, T., Mizia-Stec, K., Iwanicka, J., Iwanicki, T., Bańka, P., Jarosz, A., Filipecki, A., Żak, I., Krauze, J. and Niemiec, P. (2022) Polymorphic Variants of AGT, ABCA1, and CYBA Genes Influence the Survival of Patients with Coronary Artery Disease: A Prospective Cohort Study. Genes, 13, 2148.
https://doi.org/10.3390/genes13112148

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413