全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Soil Erodibility Rates through a Hydraulic Flume Erosometer: Test Assembly and Results in Sandy and Clayey Soils

DOI: 10.4236/ojce.2023.131011, PP. 155-170

Keywords: Erosion Rates, Procedures, Low-Cost, Criteria

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a proposal for erodibility quantitative evaluation through a hydraulic flume based on the Inderbitzen erosion test. The equipment scheme and procedures for result calculation are described, following a review of literature. Through the proposed procedure, 24 tests are conducted, in order to study the erodibility of a sandy soil and a clayey soil, in undeformed and reconstituted conditions. These are conducted using grass roots in controlled quantities, to quantify root effects on erodibility. The results of soil loss by elapsed time and the definition of the erodibility K factor shows that clayey soil is 90% less erodible compared with sandy soil. Also, roots show no significant relationship with K factor and the undeformed sample is less erodible, compared with reconstituted sample. The test methodology and the results allowed soil classification, analytical data and comparative results between different cases.

References

[1]  Tucci, C.E.M. and Collischonn, W. (1998) Drenagem urbana e controle de erosão. Proceedings of the 6th Simpósio Nacional de Controle da Erosão, Presidente Prudente, SP.
[2]  Wang, B., Zheng, F., Römkens, M.J.M. and Darboux, F. (2013) Soil Erodibility for Water Erosion: A Perspective and Chinese Experiences. Geomorphology, 187, 1-10.
https://doi.org/10.1016/j.geomorph.2013.01.018
[3]  CEPED (2012) Atlas brasileiro de desastres naturais de 1991 A 2010: Volume Brasil. Federal University of Santa Catarina, Florianópolis.
[4]  Guy, H.P. (1970) Sediment Problems in Urban Areas. US Geological Survey, Washington.
https://doi.org/10.3133/cir601E
[5]  Baptista, M.B. and Cardoso, A.S. (2013) Rios e cidades. Revista da Universidade Federal de Minas Gerais, 20, 124-153.
https://doi.org/10.35699/2316-770X.2013.2693
[6]  Valencia-González, Y., Carvalho-Camapum J. and Lara-Valencia, L.A. (2015) Influence of Biominealization of a Profil of a Tropical Soil Affected by Erosive Proceses. DYNA, 82, 221-229.
https://doi.org/10.35699/2316-770X.2013.2693
[7]  Bastos, C.A.B. (1999) Estudo geotécnico sobre a erodibilidade de solos residuais não saturados. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre.
[8]  National Academies of Sciences, Engineering, and Medicine (2019) Relationship between Erodibility and Properties of Soils. The National Academic Press, Washington DC.
[9]  Wynn, T.M. (2004) The Effects of Vegetation on Stream Bank Erosion. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Virginia.
[10]  Nearing, M.A., West, L.T. and Brown, L.C. (1988) A Consolidation Model for Estimating Changes in Rill Erodibility. Transactions of the ASAE, 31, 0696-0700.
https://doi.org/10.13031/2013.30769
[11]  Shafii, I., Briaud, J.L., Chen, H. and Shidlovskaya, A. (2016) Relationship between Soil Erodibility and Engineering Properties. Proceedings of the 8th International Conference on Scour and Erosion (ICSE 2016), Oxford, 12-15 September 2016.
[12]  Hanson, G. and Simon, A. (2001) Erodibility of Cohesive Streambeds in the Loess Area of the Midwestern USA. Hydrological Processes, 15, 23-38.
https://doi.org/10.1002/hyp.149
[13]  Briaud, J.-L. (2008) Case Histories in Soil and Rock Erosion: Woodrow Wilson Bridge, Brazos River Meander, Normandy Cliffs, and New Orleans Levees. Journal of Geotechnical and Geoenvironmental Engineering, 134, 1425-1447.
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1425)
[14]  Sheraed, J.L., Dunnigan, L.P. and Decker, R.S. (1976) Identification and Nature of Dispersive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 102, 287-301.
https://doi.org/10.1061/AJGEB6.0000256
[15]  Sherard, J.L., Dunnigan, L.P., Decker, R.S. and Steele, E.F. (1976) Pinhole Test for Identifying Dispersive Soils. Journal of the Geotechnical Engineering Division, 102, 69-85.
https://doi.org/10.1061/AJGEB6.0000236
[16]  Briaud, J.L., Ting, F., Chen, H.C., Cao, Y., Han, S.W. and Kwak, K. (2001) Erosion Function Apparatus for Scour Rate Predictions. Journal of Geotechnical and Geoenvironmental Engineering, 127, 105-113.
https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105)
[17]  Shan, H., Shen, J., Kilgore, R. and Kerenyi, K. (2015) Scour in Cohesive Soil. U.S. Department of Transportation, Washington DC.
[18]  Hanson, G.J. and Cook, K.R. (1999) Apparatus, Test Procedures, and Analytical Methods to Measure Soil Erodibility in Situ. Applied Engineering in Agriculture, 20, 455-462.
[19]  Ghebreiyessus, Y.T., Gantzer, C.J., Alberts, E.E. and Lentz, R.W. (1994) Soil Erosion by Concentrated Flow: Shear Stress and Bulk Density. Transactions of the ASAE, 37, 1791-1797.
https://doi.org/10.13031/2013.28268
[20]  Navarro, H.R. (2004) Flume Measurement of Erosion Characteristics of Soils at Bridge Foundation in Georgia. Master’s Thesis, Georgia Institute of Technology, Atlanta.
[21]  De Baets, S., Poesen, J., Gyssels, G. and Knapen, A. (2006) Effects of Grass Roots on the Erodibility of Topsoils during Concentrated Flow. Geomorphology, 76, 54-67.
https://doi.org/10.1016/j.geomorph.2005.10.002
[22]  Neto, M.I.M. and Mahler, C.F. (2017) Study of the Shear Strength of a Tropical Soil with Grass Roots. Soils and Rocks, 40, 31-37.
https://doi.org/10.28927/SR.401031
[23]  Venturini, J.A. (2019) Avaliação do efeito da adição de raízes na erodibilidade de um solo arenoso. Master’s Thesis, Federal University of Santa Maria, Santa Maria.
[24]  Inderbitzen, A.L. (1961) An Erosion Test for Soils. Materials Research and Standards, 1, 553-554.
[25]  Fácio, J.A. (1991) Proposição de uma metodologia de estudo da erodibilidade dos solos do Distrito Federal. Master’s Thesis, Universidade de Brasília, Brasília.
[26]  Chamecki, P.R. (2002) Metodologias de laboratório para estudos da erosao hidrica em solos. Master’s Thesis, Federal University of Paraná, Curitiba.
[27]  Carvalho, J.C., Sales, M.M., Souza, N.M. and Melo, M.T.S. (2006) Processos erosivos no Centro-Oeste brasileiro. Editora UNB FINATEC, Brasília.
[28]  da Silva, T.O., Pitanga, H.N., Dias Neto, S.L.S., Ferraz, R.L. and Paes, B.S.T. (2020) Potencial Erosivo de Solos Tropicais a Partir de Ensaios Geotécnicos de Avaliação Direta e Indireta. Geociências, 39, 573-584.
https://doi.org/10.5016/geociencias.v39i2.13886
[29]  Pinheiro, J.B.P., Nummer, A.V., Fernandes, L.P. and Bastos, C.A.B. (2022) Erodibilidade obtida por métodos indiretos e diretos de uma voçoroca localizada na região oeste do estado do Rio Grande do Sul-Brasil. GEOTECNIA, No. 154, 25-46.
https://doi.org/10.14195/2184-8394_154_2
[30]  Bastos, C.A.B., Milititsky, J. and Gehling, W.Y.Y. (2000) A avaliação da erodibilidade dos solos sob o enfoque geotécnico—Pesquisas e tendências. Teoria e Prática na Engenharia Civil, 1, 17-25.
[31]  Durlo, M.A. and Sutili, F.A. (2014) Bioengenharia: Manejo biotécnico de cursos de água. Vol. 3, Est Edições, Santa Maria.
[32]  Stresser, C. (2021) Metodologia Experimental para determinação de propriedades de erodibilidade em projetos de Engenharia Natural. Master’s Thesis, Federal University of Parana, Curitiba.
[33]  ASTM (2014) D2974-14—Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. ASTM International, West Conshohocken.
[34]  Reddy, B.V.V. and Jagadish, K.S. (1993) The Static Compaction of Soils. Géotechnique, 43, 337-341.
https://doi.org/10.1680/geot.1993.43.2.337
[35]  Sobreira, D.S.V., Lucena, A.E.D.F L., Lucena, L.C.F.L. and Sousa, T.M. (2018) Estudo comparativo entre os métodos de compactação de solos por impacto e amassamento. Geociências, 37, 683-693.
https://doi.org/10.5016/geociencias.v37i3.12860
[36]  ASTM (2019) D2216-19—Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, West Conshohocken.
[37]  ASTM (2021) D698-12—Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM International, West Conshohocken.
[38]  Almeida, J.G.R., Romão, P.A., Mascarenha, M.M.A. and Sales, M.M. (2015) Erodibilidade de solos tropicais não saturados nos municípios de Senador Canedo e Bonfinópolis (GO). Geociências, 34, 441-451.
[39]  Aquino, R., Silva, M., Freitas, D., Curi, N. and Avanzi, J. (2012) Soil Loesses from Typic Cambrisols and Red Latosol as Related to Three Erosive Rainfall Patters. Revista Brasileira de Ciências do Solo, 37, 213-220.
https://doi.org/10.1590/S0100-06832013000100022

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133