全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Periodicities in Solar Activity, Solar Radiation and Their Links with Terrestrial Environment

DOI: 10.4236/ns.2023.153010, PP. 111-147

Keywords: Sun: Magnetic Field, Sun: Solar Activity, Sun: Sunspots, Sun: Solar Dynamo

Full-Text   Cite this paper   Add to My Lib

Abstract:

Solar magnetic activity is expressed via variations of sunspots and active regions varying on different timescales. The most accepted is an 11-year period supposedly induced by the electromagnetic solar dynamo mechanism. There are also some shorter or longer timescales detected: the biennial cycle (2 - 2.7 years), Gleisberg cycle (80 - 100 years), and Hallstatt’s cycle (2100 - 2300 years). Recently, using Principal Component Analysis (PCA) of the observed solar background magnetic field (SBMF), another period of 330 - 380 years, or Grand Solar Cycle (GSC), was derived from the summary curve of two eigenvectors of SBMF. In this paper, a spectral analysis of the averaged sunspot numbers, solar irradiance, and the summary curve of eigenvectors of SBMF was carried out using Morlet wavelet and Fourier transforms. We detect a 10.7-year cycle from the sunspots and modulus summary curve of eigenvectors as well a 22-year-cycle and the grand solar cycle of 342 - 350-years from the summary curve of eigenvectors. The Gleissberg centennial cycle is only detected on the full set of averaged sunspot numbers for 400 years or by adding a quadruple component to the summary curve of eigenvectors. Another period of 2200 - 2300 years is detected in the Holocene data of solar irradiance measured from the abundance of 14C isotope. This period was also confirmed with the period of about 2000 - 2100 years derived from a baseline of the solar background magnetic field, supposedly, caused by the solar inertial motion (SIM) induced by the gravitation of large planets. The implication of these findings for different deposition of solar radiation into the northern and southern hemispheres of the Earth caused by the combined effects of the solar activity and solar inertial motion on the terrestrial atmosphere is also discussed.

References

[1]  Eddy, J.A. (1976) The Maunder Minimum. Science, 192, 1189-1202.
https://doi.org/10.1126/science.192.4245.1189
[2]  Connolly, R., et al. (2021) How Much Has the Sun Influenced Northern Hemisphere Temperature Trends? An Ongoing Debate. Research in Astronomy and Astrophysics, 21, 131.
https://doi.org/10.1088/1674-4527/21/6/131
[3]  Cameron, R.H. and Schüssler, M. (2017) Understanding Solar Cycle Variability. Astrophysical Journal, 843, 111.
https://doi.org/10.3847/1538-4357/aa767a
[4]  Usoskin, I.G., Gallet, Y., Lopes, F., Kovaltsov, G.A. and Hulot, G. (2016) Solar Activity during the Holocene: The Hallstatt Cycle and Its Consequence for Grand Minima and Maxima. Astronomy and Astrophysics, 587, A150.
https://doi.org/10.1051/0004-6361/201527295
[5]  Usoskin, I.G., et al. (2021) Solar Cyclic Activity over the Last Millennium Reconstructed from Annual 14C Data. Astronomy and Astrophysics, 649, A141.
https://doi.org/10.1051/0004-6361/202140711
[6]  Cameron, R.H. and Schüssler, M. (2019) Solar Activity: Periodicities beyond 11 Years Are Consistent with Random Forcing. Astronomy and Astrophysics, 625, A28.
https://doi.org/10.1051/0004-6361/201935290
[7]  Brehm, N., et al. (2021) Eleven-Year Solar Cycles over the Last Millennium Revealed by Radiocarbon in Tree Rings. Nature Geoscience, 14, 10-15.
https://doi.org/10.1038/s41561-020-00674-0
[8]  Hale, G.E., Ellerman, F., Nicholson, S.B. and Joy, A.H. (1919) The Magnetic Polarity of Sun-Spots. Astrophysical Journal, 49, 153.
https://doi.org/10.1086/142452
[9]  Parker, E.N. (1955) Hydromagnetic Dynamo Models. Astrophysical Journal, 122, 293.
https://doi.org/10.1086/146087
[10]  Babcock, H.W. (1961) The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle. Astrophysical Journal, 133, 572.
https://doi.org/10.1086/147060
[11]  Jones, C.A., Thompson, M.J. and Tobias, S.M. (2010) The Solar Dynamo. Space Science Review, 152, 591-616.
https://doi.org/10.1007/s11214-009-9579-5
[12]  Parker, E.N. (1993) A Solar Dynamo Surface Wave at the Interface between Convection and Nonuniform Rotation. Astrophysical Journal, 408, 707-719.
https://doi.org/10.1086/172631
[13]  Leighton, R.B. (1969) A Magneto-Kinematic Model of the Solar Cycle. Astrophysical Journal, 156, 1.
https://doi.org/10.1086/149943
[14]  Choudhuri, A.R., Schussler, M. and Dikpati, M. (1995) The Solar Dynamo with Meridional Circulation. Astronomy and Astrophysics, 303, L29.
[15]  Dikpati, M. and Choudhuri, A.R. (1995) On the Large-Scale Diffuse Magnetic Field of the Sun. Solar Physics, 161, 9-27.
https://doi.org/10.1007/BF00732081
[16]  Spiegel, E.A. and Weiss, N.O. (1980) Magnetic Activity and Variations in Solar Luminosity. Nature, 287, 616-617.
https://doi.org/10.1038/287616a0
[17]  Jones, C.A., Weiss, N.O. and Cattaneo, F. (1985) Nonlinear Dynamos: A Complex Generalization of the Lorenz Equations. Physica D Nonlinear Phenomena, 14, 161-176.
https://doi.org/10.1016/0167-2789(85)90176-9
[18]  Covas, E., Tavakol, R. and Moss, D. (2001) Dynamical Variations of the Differential Rotation in the Solar Convection Zone. Astronomy and Astrophysics, 371, 718-730.
https://doi.org/10.1051/0004-6361:20010345
[19]  Miesch, M.S. and Toomre, J. (2009) Turbulence, Magnetism, and Shear in Stellar Interiors. Annual Review of Fluid Mechanics, 41, 317-345.
https://doi.org/10.1146/annurev.fluid.010908.165215
[20]  Brun, A.S. and Rempel, M. (2009) Large Scale Flows in the Solar Convection Zone. Space Science Review, 144, 151-173.
https://doi.org/10.1007/s11214-008-9454-9
[21]  Weiss, N.O. (1990) Solar and Stellar Convection Zones. Computer Physics Reports, 12, 233-245.
https://doi.org/10.1016/0167-7977(90)90012-U
[22]  Tobias, S.M. (2002) The Solar Dynamo. Royal Society of London Philosophical Transactions Series A, 360, 2741-2756.
https://doi.org/10.1098/rsta.2002.1090
[23]  Schmitt, D. and Schuessler, M. (1989) Non-Linear Dynamos. I. One-Dimensional Model of a Thin Layer Dynamo. Astronomy and Astrophysics, 223, 343-351.
https://doi.org/10.12942/lrsp-2010-3
[24]  Charbonneau, P. (2010) Dynamo Models of the Solar Cycle. Living Reviews in Solar Physics, 7, 3.
[25]  Tobias, S.M., Cattaneo, F. and Boldyrev, S. (2011) MHD Dynamos and Turbulence. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139032810.010
[26]  Charbonneau, P. (2014) Solar Dynamo Theory. Annual Review of Astronomy and Astrophysics, 52, 251-290.
https://doi.org/10.1146/annurev-astro-081913-040012
[27]  Nigro, G., Pongkitiwanichakul, P., Cattaneo, F. and Tobias, S.M. (2017) What Is a Large-Scale Dynamo? Monthly Notices of RAS, 464, L119-L123.
https://doi.org/10.1093/mnrasl/slw190
[28]  Zharkova, V.V., Shepherd, S.J. and Zharkov, S.I. (2012) Principal Component Analysis of Background and Sunspot Magnetic Field Variations during Solar Cycles 21-23. Monthly Notices of RAS, 424, 2943-2953.
https://doi.org/10.1111/j.1365-2966.2012.21436.x
[29]  Zharkova, V.V., Shepherd, S.J., Popova, E. and Zharkov, S.I. (2015) Heartbeat of the Sun from Principal Component Analysis and Prediction of Solar Activity on a Millenium Timescale. Nature Scientific Reports, 5, 15689.
https://doi.org/10.1038/srep15689
[30]  Zharkova, V.V. and Shepherd, S.J. (2022) Eigen Vectors of Solar Magnetic Field in Cycles 21-24 and Their Links to Solar Activity Indices. Monthly Notices of the Royal Astronomical Society, 512, 5085-5099.
https://doi.org/10.1093/mnras/stac781
[31]  Lawrence, J.K., Cadavid, A. and Ruzmaikin, A. (2004) Principal Component Analysis of the Solar Magnetic Field I: The Axisymmetric Field at the Photosphere. Solar Physics, 225, 1-19.
https://doi.org/10.1007/s11207-004-3257-2
[32]  Cadavid, A.C., Lawrence, J.K., McDonald, D.P. and Ruzmaikin, A. (2005) Independent Global Modes of Solar Magnetic Field Fluctuations. Solar Physics, 226, 359-376.
https://doi.org/10.1007/s11207-005-8187-0
[33]  Zharkov, S., Gavryuseva, E. and Zharkova, V. (2008) The Observed Long- and Short-Term Phase Relation between the Toroidal and Poloidal Magnetic Fields in Cycle 23. Solar Physics, 248, 339-358.
https://doi.org/10.1007/s11207-007-9109-0
[34]  Zharkova, V. (2020) Modern Grand Solar Minimum Will Lead to Terrestrial Cooling. Temperature, 7, 217-222.
https://doi.org/10.1080/23328940.2020.1796243
[35]  Zharkova, V., Vasilieva, I., Shepherd, S.J. and Popova, E. (2022) Comparison of Solar Activity Proxies: Eigen Vectors versus Averaged Sunspot Numbers.
[36]  Popova, E., Zharkova, V., Shepherd, S. and Zharkov, S. (2018) On a Role of Quadruple Component of Magnetic Field in Defining Solar Activity in Grand Cycles. Journal of Atmospheric and Solar-Terrestrial Physics, 176, 61-68.
https://doi.org/10.1016/j.jastp.2017.05.006
[37]  Reimer, P., et al. (2009) INTCAL09 And MARINE09 Radiocarbon Age Calibration Curves 0-50 000 Years CAL BP. Radiocarbon, 51, 1111-1150.
https://doi.org/10.1017/S0033822200034202
[38]  Vieira, L.E.A., Solanki, S.K., Krivova, N.A. and Usoskin, I. (2011) Evolution of the Solar Irradiance during the Holocene. Astronomy and Astrophysics, 531, A6.
https://doi.org/10.1051/0004-6361/201015843
[39]  Vieira, L.E.A., Solanki, S.K., Krivova, N.A. and Usoskin, I. (2011) VizieR Online Data Catalog: Evolution of Solar Irradiance during Holocene (Vieira+, 2011). VizieR Online Data Catalog J/A+A/531/A6.
[40]  Steinhilber, F., et al. (2012) 9,400 Years of Cosmic Radiation and Solar Activity from Ice Cores and Tree Rings. Proceedings of the National Academy of Science, 109, 5967-5971.
https://doi.org/10.1073/pnas.1118965109
[41]  Scafetta, N., Milani, F., Bianchini, A. and Ortolani, S. (2016) On the Astronomical Origin of the Hallstatt Oscillation Found in Radiocarbon and Climate Records throughout the Holocene. Earth Science Reviews, 162, 24-43.
https://doi.org/10.1016/j.earscirev.2016.09.004
[42]  Mazzarella, A. and Palumbo, A. (1989) Does the Solar Cycle Modulate Seismic and Volcanic Activity. Journal of Volcanology and Geothermal Research, 39, 89-93.
https://doi.org/10.1016/0377-0273(89)90023-1
[43]  Farge, M. (1992) Wavelet Transforms and Their Applications to Turbulence. Annual Review of Fluid Mechanics, 24, 395-458.
https://doi.org/10.1146/annurev.fl.24.010192.002143
[44]  Terrence, C. and Campo, G.P. (1998) A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 61-78.
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
[45]  Bruns, A. (2004) Fourier-, Hilbert- and Wavelet-Based Signal Analysis: Are They Really Different Approaches? Journal of Neuroscience Methods, 137, 321-332.
https://doi.org/10.1016/j.jneumeth.2004.03.002
https://www.sciencedirect.com/science/article/pii/S0165027004001098
[46]  Aguilar-Rodriguez, E., et al. (2015) Comparison of Solar Wind Speeds Using Wavelet Transform and Fourier Analysis in IPS Data. Solar Physics, 290, 2507-2518.
https://doi.org/10.1007/s11207-015-0758-0
[47]  Thomas, E. and Abraham, N.P. (2022) Relationship between Sunspot Number and Seasonal Rainfall over Kerala Using Wavelet Analysis. Journal of Atmospheric and Solar-Terrestrial Physics, 240, Article ID: 105943.
https://doi.org/10.1016/j.jastp.2022.105943
[48]  Wolf, R. (1877) Geschichte der Astronomie. Oldenbourg Wissenschaftsverlag, Munich.
https://doi.org/10.1515/9783486724479
[49]  Hoyt, D.V. and Schatten, K.H. (1998) Group Sunspot Numbers: A New Solar Activity Reconstruction. Solar Physics, 179, 189-219.
https://doi.org/10.1023/A:1005007527816
[50]  Hoyt, D.V. and Schatten, K.H. (1998) Group Sunspot Numbers: A New Solar Activity Reconstruction. Solar Physics, 181, 491-512.
https://doi.org/10.1023/A:1005056326158
[51]  Hoyt, D.V., Schatten, K.H. and Nesme-Ribes, E. (1994) The One Hundredth Year of Rudolf Wolf’s Death: Do We Have the Correct Reconstruction of Solar Activity? Geophysics Research Letters, 21, 2067-2070.
https://doi.org/10.1029/94GL01698
[52]  Clette, F., Svalgaard, L., Vaquero, J.M. and Cliver, E.W. (2014) Revisiting the Sunspot Number. A 400-Year Perspective on the Solar Cycle. Space Science Review, 186, 35-103.
https://doi.org/10.1007/s11214-014-0074-2
[53]  Velasco Herrera, V.M., Soon, W. and Legates, D.R. (2021) Does Machine Learning Reconstruct Missing Sunspots and Forecast a New Solar Minimum? Advances in Space Research, 68, 1485-1501.
https://doi.org/10.1016/j.asr.2021.03.023
[54]  Leussu, R., Usoskin, I.G., Arlt, R. and Mursula, K. (2013) Inconsistency of the Wolf Sunspot Number Series around 1848. Astronomy and Astrophysics, 559, A28.
https://doi.org/10.1051/0004-6361/201322373
[55]  Usoskin, I.G., Mursula, K., Solanki, S., Schüssler, M. and Alanko, K. (2004) Reconstruction of Solar Activity for the Last Millennium Using 10Be Data. Astronomy and Astrophysics, 413, 745-751.
https://doi.org/10.1051/0004-6361:20031533
[56]  Vaquero, J.M., Gallego, M.C. and Trigo, R.M. (2007) Sunspot Numbers during 1736 1739 Revisited. Advances in Space Research, 40, 1895-1903.
https://doi.org/10.1016/j.asr.2007.02.097
[57]  Vaquero, J.M. (2007) Historical Sunspot Observations: A Review. Advances in Space Research, 40, 929-941.
https://doi.org/10.1016/j.asr.2007.01.087
[58]  Vaquero, J.M. and Gallego, M.C. (2014) Reconstructing Past Solar Activity Using Meridian Solar Observations: The Case of the Royal Observatory of the Spanish Navy (1833-1840). Advances in Space Research, 53, 1162-1168.
https://doi.org/10.1016/j.asr.2014.01.015
[59]  Svalgaard, L. and Schatten, K.H. (2016) Reconstruction of the Sunspot Group Number: The Backbone Method. Solar Physics, 291, 2653-2684.
https://doi.org/10.1007/s11207-015-0815-8
[60]  Svalgaard, L. and Schatten, K.H. (2017) On the Sunspot Group Number Reconstruction: The Backbone Method Revisited.
[61]  Svalgaard, L. and Schatten, K.H. (2017) Sunspot Group Numbers since 1900 and Implications for the Long-Term Record of Solar Activity.
[62]  Carrasco, V.M.S., Gallego, M.C. and Vaquero, J.M. (2020) Number of Sunspot Groups from the Galileo-Scheiner Controversy Revisited. Monthly Notices of RAS, 496, 2482-2492.
https://doi.org/10.1093/mnras/staa1633
[63]  Hayakawa, H., et al. (2020) Sunspot Observations by Hisako Koyama: 1945-1996. Monthly Notices of RAS, 492, 4513-4527.
https://doi.org/10.1093/mnras/stz3345
[64]  SILSO World Data Center (2021) The International Sunspot Number. International Sunspot Number Monthly Bulletin and Online Catalogue.
https://www.sidc.be/silso/datafiles
[65]  Efimenko, V.M. and Lozitsky, V.G. (2018) Essential Features of Long-Term Changes of Areas and Diameters of Sunspot Groups in Solar Activity Cycles 12-24. Advances in Space Research, 61, 2820-2826.
https://doi.org/10.1016/j.asr.2018.03.012
[66]  Stix, M. (1976) Differential Rotation and the Solar Dynamo. Astronomy and Astrophysics, 47, 243-254.
[67]  Shepherd, S.J., Zharkov, S.I. and Zharkova, V.V. (2014) Prediction of Solar Activity from Solar Background Magnetic Field Variations in Cycles 21-23. Astrophysical Journal, 795, 46.
https://doi.org/10.1088/0004-637X/795/1/46
[68]  Schmidt, M. and Lipson, H. (2009) Distilling Free-Form Natural Laws from Experimental Data. Science, 324, 81-85.
https://doi.org/10.1126/science.1165893
[69]  Popova, E., Zharkova, V. and Zharkov, S. (2013) Probing Latitudinal Variations of the Solar Magnetic Field in Cycles 21-23 by Parker’s Two-Layer Dynamo Model with Meridional Circulation. Annales Geophysicae, 31, 2023-2038.
https://doi.org/10.5194/angeo-31-2023-2013
[70]  Zharkova, V.V., Shepherd, S.J., Popova, E. and Zharkov, S.I. (2018) Reinforcing a Double Dynamo Model with Solar-Terrestrial Activity in the Past Three Millennia. In: Foullon, C. and Malandraki, O.E., Eds., Space Weather of the Heliosphere: Processes and Forecasts, Vol. 335, International Astronomical Union, Brussels, 211-215.
https://doi.org/10.1017/S1743921317010912
[71]  Zharkova, V.V., Shepherd, S.J., Popova, E. and Zharkov, S.I. (2018) Reply to Comment on the Paper “Popova et al on a Role of Quadruple Component of Magnetic Field in Defining Solar Activity in Grand Cycles’’ by Usoskin (2018). Journal of Atmospheric and Solar-Terrestrial Physics, 176, 72-82.
https://doi.org/10.1016/j.jastp.2017.09.019
[72]  Kitiashvili, I.N. (2020) Application of Synoptic Magnetograms to Global Solar Activity Forecast. Astrophysical Journal, 890, 36.
https://doi.org/10.3847/1538-4357/ab64e7
[73]  Obridko, V.N., Sokoloff, D.D., Pipin, V.V., Shibalvaa, A.S. and Livshits, I.M. (2021) Zonal Harmonics of Solar Magnetic Field for Solar Cycle Forecast. Journal of Atmospheric and Solar-Terrestrial Physics, 225, Article ID: 105743.
https://doi.org/10.1093/mnras/stab1062
[74]  Courtillot, V., Lopes, F. and Le Mouël, J.L. (2021) On the Prediction of Solar Cycles. Solar Physics, 296, 21.
https://doi.org/10.1007/s11207-020-01760-7
[75]  Zhao, J., Bogart, R.S., Kosovichev, A.G., Duvall, T.L. and Hartlep, T. (2013) Detection of Equatorward Meridional Flow and Evidence of Double-Cell Meridional Circulation inside the Sun. Astrophysical Journal Letters, 774, L29.
https://doi.org/10.1088/2041-8205/774/2/L29
[76]  Ruzmaikin, A.A. (1981) The Solar Cycle as a Strange Attractor. Comments on Astrophysics, 9, 85-93.
[77]  Kitiashvili, I. and Kosovichev, A.G. (2008) Application of Data Assimilation Method for Predicting Solar Cycles. Astrophysical Journal Letters, 688, L49.
https://doi.org/10.1086/594999
[78]  Kitiashvili, I.N. and Kosovichev, A.G. (2009) Nonlinear Dynamical Modeling of Solar Cycles Using Dynamo Formulation with Turbulent Magnetic Helicity. Geophysical and Astrophysical Fluid Dynamics, 103, 53-68.
https://doi.org/10.1080/03091920802396518
[79]  Popova, E.P. and Potemina, K.A. (2013) Modeling of the Solar Activity Double Cycle Using Dynamical Systems. Geomagnetism and Aeronomy, 53, 941-944.
https://doi.org/10.1134/S0016793213080203
[80]  Krause, F. and Raedler, K.H. (1980) Mean-Field Magnetohydrodynamics and Dynamo Theory.
[81]  Popova, H. and Sokoloff, D. (2008) Meridional Circulation and Dynamo Waves. Astronomische Nachrichten, 329, 766.
https://doi.org/10.1002/asna.200811028
[82]  Benevolenskaya, E.E. (1995) Double Magnetic Cycle of Solar Activity. Solar Physics, 161, 1-8.
https://doi.org/10.1007/BF00732080
[83]  Steinhilber, F., Beer, J. and Fröhlich, C. (2009) Total Solar Irradiance during the Holocene. Geophysics Research Letters, 36, L19704.
https://doi.org/10.1029/2009GL040142
[84]  Zharkova, V.V., Shepherd, S.J., Zharkov, S.I. and Popova, E. (2019) Retracted Article: Oscillations of the Baseline of Solar Magnetic Field and Solar Irradiance on a Millennial Timescale. Scientific Reports, 9, 9197.
https://doi.org/10.1038/s41598-019-45584-3
[85]  Zharkova, V. (2021) Millennial Oscillations of Solar Irradiance and Magnetic Field in 600-2600. In: Bevelacqua, J., Ed., Solar System Planets and Exoplanets, IntechOpen, London, 30 p.
https://doi.org/10.5772/intechopen.96450
[86]  Lockwood, M., et al. (2020) Semi-Annual, Annual and Universal Time Variations in the Magnetosphere and in Geomagnetic Activity: 1. Geomagnetic Data. Journal of Space Weather and Space Climate, 10, 23.
https://doi.org/10.1051/swsc/2020023
[87]  Fairbridge, R.W. and Shirley, J.H. (1987) Prolonged Minima and the 179-yr Cycle of the Solar Inertial Motion. Solar Physics, 110, 191-210.
https://doi.org/10.1007/BF00148211
[88]  Nagovitsyn, Y., Obridko, V. and Kuleshova, A. I. (2015) The Upper Limit of Sunspot Activity as Observed over a Long Time Interval. Solar Physics, 290, 1285-1294.
https://doi.org/10.1007/s11207-015-0657-4
[89]  Scafetta, N. (2014) Discussion on the Spectral Coherence between Planetary, Solar and Climate Oscillations: A Reply to Some Critiques. Astrophysics and Space Science, 354, 275-299.
https://doi.org/10.1007/s10509-014-2111-8
[90]  Bretagnon, P. and Francou, G. (1988) Planetary Theories in Rectangular and Spherical Variables: VSOP87 Solution. Astronomy and Astrophysics, 202, 309.
[91]  Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S. and Kuchynka, P. (2014) The Planetary and Lunar Ephemerides DE430 and DE431. Interplanetary Network Progress Report 42-196, 1-81.
[92]  Cionco, R.G. and Pavlov, D.A. (2018) Solar Barycentric Dynamics from a New Solar-Planetary Ephemeris. Astronomy and Astrophysics, 615, A153.
https://doi.org/10.1051/0004-6361/201732349
[93]  Perminov, A.S. and Kuznetsov, E.D. (2018) Orbital Evolution of the Sun-Jupiter-Saturn-Uranus-Neptune Four-Planet System on Long-Time Scales. Solar System Research, 52, 241-259.
https://doi.org/10.1134/S0038094618010070
[94]  Le Mouël, J.-L., Lopes, F. and Courtillot, V. (2017) Identification of Gleissberg Cycles and a Rising Trend in a 315-Year-Long Series of Sunspot Numbers. Solar Physics, 292, 43.
https://doi.org/10.1007/s11207-017-1067-6
[95]  Fiori, W. (2022) A Faunal Approach to Understanding Ice Core Data, Milankovitch Cycles, the AGT and Ice Ages. Academia.edu 23.
[96]  Lean, J., Beer, J. and Bradley, R. (1995) Reconstruction of Solar Irradiance since 1610: Implications for Climate Change. Geophysics Research Letters, 22, 3195-3198.
https://doi.org/10.1029/95GL03093
[97]  Krivova, N.A., Solanki, S.K. and Unruh, Y.C. (2011) Towards a Long-Term Record of Solar Total and Spectral Irradiance. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 223-234.
https://doi.org/10.1016/j.jastp.2009.11.013
[98]  Milankovich, M. (1998) Canon of Insolation and the Ice-Age Problem. Zavod za Udzbenike i Nastavna Sredstva, 307-310.
[99]  Steel, D. (2013) Perihelion Precession, Polar Ice and Global Warming. Journal of Cosmology, 22, 10106-10129.
[100]  Akasofu, S.-I. (2010) On the Recovery from the Little Ice Age. Natural Science, 2, 1211-1224.
https://doi.org/10.4236/ns.2010.211149
[101]  Charvatova, I. (1988) The Solar Motion and the Variability of Solar Activity. Advances in Space Research, 8, 147-150.
https://doi.org/10.1016/0273-1177(88)90184-6
[102]  Lee, I., Robert, B., Gibson, M.A., Wilson, R.S. and Thomas, S. (1995) Long-Term Total Solar Irradiance Variability during Sunspot Cycle 22. Journal of Geophysics Research, 100, 1667-1676.
https://doi.org/10.1029/94JA02897
[103]  Willson, R.C. and Hudson, H.S. (1991) The Sun’s Luminosity over a Complete Solar Cycle. Nature, 351, 42-44.
https://doi.org/10.1038/351042a0
[104]  Lockwood, M. and Stamper, R. (1999) Long-Term Drift of the Coronal Source Magnetic Flux and the Total Solar Irradiance. Geophysics Research Letters, 26, 2461-2464.
https://doi.org/10.1029/1999GL900485
[105]  Fligge, M. and Solanki, S.K. (2000) The Solar Spectral Irradiance since 1700. Geophysics Research Letters, 27, 2157-2160.
https://doi.org/10.1029/2000GL000067
[106]  Foukal, P., Fröhlich, C., Spruit, H. and Wigley, T.M.L. (2006) Variations in Solar Luminosity and Their Effect on the Earth’s Climate. Nature, 443, 161-166.
https://doi.org/10.1038/nature05072
[107]  Stauning, P. (2011) Solar Activity-Climate Relations: A Different Approach. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 1999-2012.
https://doi.org/10.1016/j.jastp.2011.06.011
[108]  Lean, J. (2000) Evolution of the Sun’s Spectral Irradiance since the Maunder Minimum. Geophysics Research Letters, 27, 2425-2428.
https://doi.org/10.1029/2000GL000043
[109]  Shindell, D.T., Schmidt, G.A., Mann, M.E., Rind, D. and Waple, A. (2001) Solar Forcing of Regional Climate Change during the Maunder Minimum. Science, 294, 2149-2152.
https://doi.org/10.1126/science.1064363
[110]  Miller, G.H., et al. (2012) Abrupt Onset of the Little Ice Age Triggered by Volcanism and Sustained by Sea-Ice/Ocean Feedbacks. Geophysics Research Letters, 39, L02708.
https://doi.org/10.1029/2011GL050168
[111]  Easterbrook, D.J. (2016) Evidence-Based Climate Science. Elsevier, Amsterdam.
[112]  Archibald, D. (2022) Methane: Much Ado about Nothing. The Wentworth Report 5.
[113]  Held, I.M. (2013) Climate Science: The Cause of the Pause. Nature, 501, 318-319.
https://doi.org/10.1038/501318a
[114]  Kosaka, Y. and Xie, S.-P. (2013) Recent Global-Warming Hiatus Tied to Equatorial Pacific Surface Cooling. Nature, 501, 403-407.
https://doi.org/10.1038/nature12534
[115]  Alimonti, G., Mariani, L., Prodi, F. and Ricci, R.A. (2022) A Critical Assessment of Extreme Events Trends in Times of Global Warming. European Physical Journal Plus, 137, 112.
https://doi.org/10.1140/epjp/s13360-021-02243-9

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413