|
Modern Physics 2023
铁电体极化的时空有序化及其热力学补偿
|
Abstract:
铁电体的极化效应在信息存储、精密测量、自动控制等方面得到了广泛应用,揭示铁电相与顺电相的反转机制是一个极为重要的科学问题。本论文通过分析孤立系热功转换的时空有序化补偿,发现了临界温度两侧存在具有普遍意义的时空有序化补偿机制,给出了基于调控铁电体临界温度两侧的温度,即通过加热及冷却的方式进行铁电相与顺电相反转的方法,进一步讨论了铁电体中空间对称性破缺时,将导致顺电相反转为铁电相,而当铁电体中空间对称性恢复时,将导致铁电相反转为顺电相。时空有序化补偿理论,不但适用于铁电体中的铁电相与顺电相的反转,而且也适用于铁磁体的铁磁相与顺磁相的相互反转。
The polarization effect of ferroelectrics has been widely used in information storage, precise measurement and automatic control. It is an extremely important scientific problem to reveal the reversal mechanism of ferroelectric and paraelectric phases. In this paper, by analyzing the spatiotemporal ordering compensation of heat-work conversion in an isolated system, it is found that there is a universal spatiotemporal ordering compensation mechanism on both sides of the critical temperature. Based on the control of the temperature on both sides of the critical temperature of ferroelectrics, that is, the method of reversing the ferroelectric phase and the paraelectric phase by heating and cooling is given. Furthermore, it is further discussed that when the spatial symmetry breaking occurs in ferroelectrics, the paraelectric phase will be reversed to the ferroelectric phase, and when the spatial symmetry in ferroelectrics is restored, the ferroelectric phase will be reversed to the paraelectric phase. The theory of spatiotemporal ordering compensation is not only applicable to the inversion of ferroelectric and paraelectric phases in ferroelectrics, but also applicable to the mutual inversion of ferromagnetic and paramagnetic phases in ferromagnets.
[1] | 钟维烈. 铁电物理的近期发展[J]. 物理, 1996, 25(4):193-199. |
[2] | Wu, J. and Wu, T. (2020) A Bright New World of Ferroelectrics: Magic of Spontaneous Polarization. ACS Applied Materials & Interfaces, 12, 52231-52233. https://doi.org/10.1021/acsami.0c18276 |
[3] | Xu, M., Chen, J., Zhou, X., et al. (2022) Single-Crystalline Thin-Film Memory Arrays of Molecular Ferroelectrics with Ultralow Operation Voltages. ACS Materials Letters, 4, 758-763. https://doi.org/10.1021/acsmaterialslett.2c00070 |
[4] | Gao, W., Zhu, Y., Wang, Y., Yuan, G. and Liu, J.-M. (2020) A Review of Flexible Perovskite Oxide Ferroelectric Films and Their Application. Journal of Materiomics, 6, 1-16. https://doi.org/10.1016/j.jmat.2019.11.001 |
[5] | Li, W., Li, C., Zhang, G., et al. (2021) Molecular Ferroelec-tric-Based Flexible Sensors Exhibiting Supersensitivity and Multimodal Capability for Detection. Advanced Materials, 33, Article ID: 2104107.
https://doi.org/10.1002/adma.202104107 |
[6] | Thakur, V.N., Zafer, A., Yadav, S. and Kumar, A. (2019) Ferroelec-tric-Dielectric Composite Pressure Sensor. Sensors and Actuators A: Physical, 297, Article ID: 111536. https://doi.org/10.1016/j.sna.2019.111536 |
[7] | Xu, B., and Ren, S. (2016) Multisensing Materials: Integrated Charge Transfer in Organic Ferroelectrics for Flexible Multisensing Materials. Small, 12, 4501-4501. https://doi.org/10.1002/smll.201670165 |
[8] | Mistewicz, K. (2018) Recent Advances in Ferroelectric Nanosensors: Toward Sensitive Detection of Gas, Mechanothermal Signals, and Radiation. Journal of Nanomaterials, 2018, Article ID: 2651056.
https://doi.org/10.1155/2018/2651056 |
[9] | 曹万强, 陈甘霖, 陈勇, 等. 铁电体的极化储能效应[J]. 中国科学(技术科学), 2019, 49(8): 930-938. |
[10] | Zhang, X., Shen, Y., Xu, B., et al. (2016) Giant Energy Density and Improved Discharge Efficiency of Solution-Processed Polymer Nanocomposites for Dielectric Energy Storage. Advanced Materials, 28, 2055-2061.
https://doi.org/10.1002/adma.201503881 |
[11] | Zhang, M.-H., Qi, J.-L., Liu, Y.-Q., et al. (2022) High Energy Stor-age Capability of Perovskite Relaxor Ferroelectrics via Hierarchical Optimization. Rare Metals, 41, 730-744. https://doi.org/10.1007/s12598-021-01869-z |
[12] | Xie, A., Fu, J., Zuo, R., et al. (2022) Supercritical Relaxor Nanograined Ferroelectrics for Ultrahigh-Energy-Storage Capacitors. Advanced Materials, 34, Article ID: 2204356. https://doi.org/10.1002/adma.202204356 |
[13] | 卢小平, 郭丹丹, 俞树荣. 热力学耦合的相位描述及其最小耗散原理[J]. 甘肃科学学报, 2015, 27(1): 15-17. |
[14] | 卢小平. 热交叉现象广义场协同与热力学耦合原理[D]: [博士学位论文]. 兰州: 兰州理工大学, 2016. |
[15] | Shi, P.-P., Tang, Y-Y.., Li, P.-F., et al. (2016) Symmetry Breaking in Molecular Ferroelectrics. Chemical Society Reviews, 45, 3811-3827. https://doi.org/10.1039/C5CS00308C |
[16] | 张闻. 分子基铁电体研究进展[J]. 大学化学, 2017, 32(7): 1-7. |