全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

连续管道弯头应力增大系数修正计算及实验研究
Correction Calculation and Experimental Study on Stress Intensification Factor of Pipe Elbow

DOI: 10.12677/IJM.2023.121007, PP. 68-77

Keywords: 管道弯头,应力增大系数,实验研究,修正计算公式,有限元分析
Pipe Elbow
, Stress Intensification Factor, Experimental Study, Modified Calculating Formula, Finite Element Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探索管道弯头在二次应力校核中的应力增大效应,本文以工程中常用的U型弯管结构为研究对象,建立了管道弯头应力实验平台,测得了弯头应力最大值随外载荷变化规律并与有限元及ASME B31.3规范结果进行了对比分析,在此基础上提出了适用于工程应用的修正弯头应力增大系数(Stress In-tensification Factor, SIF)计算公式,进而研究了不同径厚比和相对管径对弯头应力分布的影响规律。研究结果表明,在弹性阶段弯头应力最大值出现在弯头内弧中心点附近,且随着外荷载的增加,弯头应力近似呈线性增长;壳单元有限元模型仿真结果与实验值基本一致,U型弯管中各个弯头应力分布规律受外弯矩作用影响较显著,具体表现为外弯矩越大,弯头应力值越高;基于实验及有限元计算结果,综合考虑弯矩对弯头应力增大效应的影响,本文提出的应力增大系数修正公式与原ASME B31.3规范公式相比,其计算结果更接近实验值,计算精度提升了16.77%;同时,在相同外荷载作用下,弯头应力随径厚比的增加而减小,随相对管径的增加而增大,径厚比大小对弯头应力分布作用较为显著,相对管径的改变对弯头应力计算影响较小。
In order to study the stress intensification effect of pipe elbow in the secondary stress check, the U-shaped pipeline commonly used in engineering was taken as the research object. The experiment platform for analyzing pipe elbow stress was established, and the maximum stress with the external load was measured and compared with the results of the Finite Element Analysis (FEA) results and ASME B31.3 Code. On this basis, a correction formula calculating the Stress Intensification Factor (SIF) of elbows was proposed, and the influence of the ratio of pipe diameter to wall thickness and the relative diameter on the elbow stress distribution was studied. The results showed that the maximum stress of the elbow appeared near the center point of the intrados of the elbow, and the stress of the elbow increased approximately linearly with the increase of the external load in the elastic stage. The simulation results of the shell element finite element model are basically consistent with the experimental values. The stress distribution law of each elbow in the U-shaped pipeline was significantly affected by the external bending moment, and the greater the external bending moment, the higher the elbow stress values. Based on the experimental and finite element calculation results and considering the influence of bending moment on the stress intensification effect of elbow, the calculation results of the SIF correction formula is closer to the experimental values compared with the ASME B31.3 code, and the computational accuracy was improved by 16.77%. Under the same external load, the elbow stress decreased with the increase of the ratio of pipe diameter to wall thickness and increased with the increase of the relative diameter. The ratio of pipe diameter to wall thickness had a significant effect on the elbow stress distribution, and the change of the relative diameter had little effect on the elbow stress calculation.

References

[1]  Shibata, H. (1993) Recent Development of Aseismic Design Practice of Equipment and Piping System in Japan. Journal of Pressure Vessel Technology, 115, 106-121.
https://doi.org/10.1115/1.2929504
[2]  The American Society of Mechanical Engineers (2007) ASME B31.3-2006 Process Piping. ASME International (ASME), New York.
[3]  余华金, 刘佳, 王彬, 等. ASME核电规范管道应力分析公式的原理探讨[C]//第十七届全国反应堆结构力学会议论文集. 上海: 中国力学学会反应堆结构力学专业委员会, 2012: 950-955.
[4]  Markl, A.R.C. (1955) Piping-Flexibility Analysis. Transaction of ASME, 77, 287-303.
[5]  Nordham, D.J. and Kaldor, L.M. (1993) Design Procedure for Stress Intensification Factors of 90-Deg Curved Pipe Having Various Tangent Lengths (Design Paper). Journal of Pressure Vessel Technology, 115, 313-318.
https://doi.org/10.1115/1.2929533
[6]  Nikola, J. (2018) Analysis of Piping Stress Intensification Factors Based on Numerical Models. International Journal of Pressure Vessels and Piping, 163, 8-14.
https://doi.org/10.1016/j.ijpvp.2018.03.009
[7]  Nikola, J., Zdravko, I., Mirjana, S., et al. (2020) Stress Intensifica-tion Factor, Sustained Stress Index and Flexibility Factor Analysis of Large D/T Elbows. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 235, 1619-1632.
https://doi.org/10.1177/0954406220947125
[8]  Matzen, V.C. and Tan, Y. (2002) The History of the B2 Stress Index. Journal of Pressure Vessel Technology, 124, 168-176.
https://doi.org/10.1115/1.1464564
[9]  高建林, 宋光红, 章军, 等. 关于弯头应力增大系数的计算[J]. 化工设备与管道, 2016, 53(3): 81-83.
[10]  中华人民共和国国家质量监督检验检疫总局. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228.1-2010[S]. 北京: 中国标准出版社, 2012.
[11]  董彦伟. 化工设计中的管道应力分析[J]. 化工管理, 2021(8): 172-173.
[12]  王辰, 秦宜奋, 张宏宇, 等. 面内开/闭弯载荷作用下压力管道弯头的塑性载荷研究[J]. 压力容器, 2006(4): 7-12.
[13]  Rudolph, J. and Scavuzzo, J. (2006) Effect of Loading on Stress Intensification Factors. Journal of Pressure Vessel Technology, 128, 33-38.
https://doi.org/10.1115/1.2148420
[14]  Bish, J.F. (1987) The Phenomenon of Stress Intensification. For-schung im Ingenieurwesen, 53, 94-96.
https://doi.org/10.1007/BF02558719
[15]  Mair, D. (2014) Stress Intensification Factors for Fabricated Lateral Pip-ing Connections. Journal of Pressure Vessel Technology, 136, Article ID: 061206.
https://doi.org/10.1115/1.4027319

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413