全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海马神经发生在精神分裂症中的研究进展
Research Progress on Hippocampal Neurogenesis in Schizophrenia

DOI: 10.12677/IJPN.2023.121001, PP. 1-15

Keywords: 海马神经发生,精神分裂症,易感基因,神经发育,认知缺陷,Hippocampal Neurogenesis, Schizophrenia, Susceptibility Gene, Neurodevelopment, Cognitive Deficits

Full-Text   Cite this paper   Add to My Lib

Abstract:

海马神经发生是海马齿状回颗粒下区形成新的神经元的过程,受到各种生理或病理因素的调控。精神分裂症是一种重性精神疾病,临床上主要表现为阳性症状、阴性症状和紊乱综合征,并伴随海马神经发生异常,提示精神分裂症相关风险因子作为病理刺激影响海马神经发生。反之,调控海马神经发生对精神分裂症的早期干预和治疗也有一定的意义。该文就精神分裂症相关因子对海马神经发生的影响及调控海马神经发生在精神分裂症中的作用进行综述。
Hippocampal neurogenesis is the process of forming new neurons in the subgranular area of hippocampal dentate gyrus, which is regulated by various physiological or pathological factors. Schizophrenia is a serious neuropsychiatric disease characterized by the presence of positive symptoms, negative symptoms and disorganisation syndromes. Importantly, it is accompanied by abnormal hippocampal neurogenesis, suggesting that schizophrenia related risk factors may affect hippocampal neurogenesis. Additionally, the regulation of hippocampal neurogenesis is critical for the early intervention and treatment of schizophrenia. Therefore, here the article will review the recent progress on the effects of schizophrenia related factors on hippocampal neurogenesis and the roles of regulating hippocampal neurogenesis in schizophrenia.

References

[1]  Jauhar, S., Johnstone, M. and Mckenna, P.J. (2022) Schizophrenia. The Lancet, 399, 473-486.
https://doi.org/10.1016/S0140-6736(21)01730-X
[2]  Vita, A., Minelli, A., Barlati, S., et al. (2019) Treat-ment-Resistant Schizophrenia: Genetic and Neuroimaging Correlates. Frontiers in Pharmacology, 10, 402.
https://doi.org/10.3389/fphar.2019.00402
[3]  Wegrzyn, D., Juckel, G. and Faissner, A. (2022) Structural and Functional Deviations of the Hippocampus in Schizophrenia and Schizophrenia Animal Models. International Journal of Molecular Sciences, 23, 5482.
https://doi.org/10.3390/ijms23105482
[4]  Thomas, M.L., Green, M.F., Hellemann, G., et al. (2017) Modeling Deficits from Early Auditory Information Processing to Psychosocial Functioning in Schizophrenia. JAMA Psychiatry, 74, 37-46.
https://doi.org/10.1001/jamapsychiatry.2016.2980
[5]  Joshi, Y.B., Thomas, M.L., Braff, D.L., et al. (2021) Anti-cholinergic Medication Burden-Associated Cognitive Impairment in Schizophrenia. American Journal of Psychiatry, 178, 838-847.
https://doi.org/10.1176/appi.ajp.2020.20081212
[6]  Rasetti, R., Mattay, V.S., White, M.G., et al. (2014) Altered Hippocampal-Parahippocampal Function during Stimulus Encoding: A Potential Indicator of Genetic Liability for Schiz-ophrenia. JAMA Psychiatry, 71, 236-247.
https://doi.org/10.1001/jamapsychiatry.2013.3911
[7]  Li, Y., Mu, Y. and Gage, F.H. (2009) Development of Neural Circuits in the Adult Hippocampus. Current Topics in Developmental Biology, 87, 149-174.
https://doi.org/10.1016/S0070-2153(09)01205-8
[8]  Jin, X. (2016) The Role of Neurogenesis during Develop-ment and in the Adult Brain. European Journal of Neuroscience, 44, 2291-2299.
https://doi.org/10.1111/ejn.13251
[9]  Larijani, B., Parhizkar Roudsari, P., Hadavandkhani, M., et al. (2021) Stem Cell-Based Models and Therapies: A Key Approach into Schizophrenia Treatment. Cell and Tissue Banking, 22, 207-223.
https://doi.org/10.1007/s10561-020-09888-3
[10]  Altman, J. and Das, G.D. (1965) Autoradiographic and Histo-logical Evidence of Postnatal Hippocampal Neurogenesis in Rats. Journal of Comparative Neurology, 124, 319-335.
https://doi.org/10.1002/cne.901240303
[11]  Bonaguidi, M.A., Wheeler, M.A., Shapiro, J.S., et al. (2011) In Vivo Clonal Analysis Reveals Self-Renewing and Multipotent Adult Neural Stem Cell Characteristics. Cell, 145, 1142-1155.
https://doi.org/10.1016/j.cell.2011.05.024
[12]  Cameron, H.A. and Mckay, R.D. (2001) Adult Neurogenesis Pro-duces a Large Pool of New Granule Cells in the Dentate Gyrus. Journal of Comparative Neurology, 435, 406-417.
https://doi.org/10.1002/cne.1040
[13]  Van Praag, H., Schinder, A.F., Christie, B.R., et al. (2002) Functional Neu-rogenesis in the Adult Hippocampus. Nature, 415, 1030-1034.
https://doi.org/10.1038/4151030a
[14]  Leal, G., Bramham, C.R. and Duarte, C.B. (2017) BDNF and Hippocampal Synaptic Plasticity. Vitamins and Hormones, 104, 153-195.
https://doi.org/10.1016/bs.vh.2016.10.004
[15]  Zhu, W., Cheng, S., Xu, G., et al. (2011) Intranasal Nerve Growth Factor Enhances Striatal Neurogenesis in Adult Rats with Focal Cerebral Ischemia. Drug Delivery, 18, 338-343.
https://doi.org/10.3109/10717544.2011.557785
[16]  Bobbo, V.C., Engel, D.F., Jara, C.P., et al. (2021) Interleukin-6 Actions in the Hypothalamus Protects against Obesity and Is Involved in the Regulation of Neurogenesis. Journal of Neuroinflammation, 18, 192.
https://doi.org/10.1186/s12974-021-02242-8
[17]  Kapri, D., Fanibunda, S.E. and Vaidya, V.A. (2022) Thyroid Hormone Regulation of Adult Hippocampal Neurogenesis: Putative Molecular and Cellular Mechanisms. Vitamins and Hormones, 118, 1-33.
https://doi.org/10.1016/bs.vh.2021.10.001
[18]  Suh, H., Deng, W. and Gage, F.H. (2009) Signaling in Adult Neurogenesis. Annual Review of Cell and Developmental Biology, 25, 253-275.
https://doi.org/10.1146/annurev.cellbio.042308.113256
[19]  Roeske, M.J., Konradi, C., Heckers, S., et al. (2021) Hippocampal Volume and Hippocampal Neuron Density, Number and Size in Schizophrenia: A Systematic Review and Meta-Analysis of Postmortem Studies. Molecular Psychiatry, 26, 3524-3535.
https://doi.org/10.1038/s41380-020-0853-y
[20]  Allen, K., Fung, S. and Weickert, C. (2016) Cell Proliferation Is Reduced in the Hippocampus in Schizophrenia. Australian & New Zealand Journal of Psychiatry, 50, 473-480.
https://doi.org/10.1177/0004867415589793
[21]  Murueta-Goyena, A., Ortuzar, N., Lafuente, J., et al. (2020) En-riched Environment Reverts Somatostatin Interneuron loss in MK-801 Model of Schizophrenia. Molecular Neurobiology, 57, 125-134.
https://doi.org/10.1007/s12035-019-01762-y
[22]  Tanimura, A., Liu, J., Namba, T., et al. (2009) Prenatal Phency-clidine Exposure Alters Hippocampal Cell Proliferation in Offspring Rats. Synapse, 63, 729-736.
https://doi.org/10.1002/syn.20660
[23]  Yanai, J., Avraham, Y., Levy, S., et al. (1992) Alterations in Septohippo-campal Cholinergic Innervations and Related Behaviors after Early Exposure to Heroin and Phencyclidine. Brain Re-search. Developmental Brain Research, 69, 207-214.
https://doi.org/10.1016/0165-3806(92)90161-O
[24]  Kaneko, N., Okano, H. and Sawamoto, K. (2006) Role of the Cholinergic System in Regulating Survival of Newborn Neurons in the Adult Mouse Dentate Gyrus and Olfactory Bulb. Genes Cells, 11, 1145-1159.
https://doi.org/10.1111/j.1365-2443.2006.01010.x
[25]  Toriumi, K., Mouri, A., Narusawa, S., et al. (2012) Prena-tal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neu-rons in the Prefrontal Cortex. Neuropsychopharmacology, 37, 1387-1396.
https://doi.org/10.1038/npp.2011.324
[26]  Bick-Sander, A., Steiner, B., Wolf, S.A., et al. (2006) Running in Pregnancy Transiently Increases Postnatal Hippocampal Neurogenesis in the Offspring. Proceedings of the National Academy of Sciences of the United States of America, 103, 3852-3857.
https://doi.org/10.1073/pnas.0502644103
[27]  Sturgeon, R.D., Fessler, R.G., London, S.F., et al. (1982) Behav-ioral Effects of Chronic Phencyclidine Administration in Rats. Psychopharmacology (Berlin), 76, 52-56.
https://doi.org/10.1007/BF00430755
[28]  Keilhoff, G., Bernstein, H.G., Becker, A., et al. (2004) Increased Neu-rogenesis in a Rat Ketamine Model of Schizophrenia. Biological Psychiatry, 56, 317-322.
https://doi.org/10.1016/j.biopsych.2004.06.010
[29]  Birnbaum, R. and Weinberger, D. (2017) Genetic Insights into the Neurodevelopmental Origins of Schizophrenia. Nature Reviews Neuroscience, 18, 727-740.
https://doi.org/10.1038/nrn.2017.125
[30]  Takahashi, K., Nakagawasai, O., Sakuma, W., et al. (2019) Prenatal Treatment with Methylazoxymethanol Acetate as a Neurodevelopmental Disruption Model of Schizophrenia in Mice. Neuropharmacology, 150, 1-14.
https://doi.org/10.1016/j.neuropharm.2019.02.034
[31]  Paylor, J., Lins, B., Greba, Q., et al. (2016) Developmental Disruption of Perineuronal Nets in the Medial Prefrontal Cortex after Maternal Immune Activation. Scientific Reports, 6, 37580.
https://doi.org/10.1038/srep37580
[32]  Steullet, P., Cabungcal, J., Coyle, J., et al. (2017) Oxidative Stress-Driven Parvalbumin Interneuron Impairment as a Common Mechanism in Models of Schizophrenia. Molecular Psychiatry, 22, 936-943.
https://doi.org/10.1038/mp.2017.47
[33]  Giovanoli, S., Weber, L. and Meyer, U. (2014) Single and Combined Ef-fects of Prenatal Immune Activation and Peripubertal Stress on Parvalbumin and Reelin Expression in the Hippocampal Formation. Brain, Behavior, and Immunity, 40, 48-54.
https://doi.org/10.1016/j.bbi.2014.04.005
[34]  Couch, A.C.M., Berger, T., Hanger, B., et al. (2021) Maternal Immune Activation Primes Deficiencies in Adult Hippocampal Neurogenesis. Brain, Behavior, and Immunity, 97, 410-422.
https://doi.org/10.1016/j.bbi.2021.07.021
[35]  Uzuneser, T.C., Speidel, J., Kogias, G., et al. (2019) Disrupt-ed-in-Schizophrenia 1 (DISC1) Overexpression and Juvenile Immune Activation Cause Sex-Specific Schizophre-nia-Related Psychopathology in Rats. Frontiers in Psychiatry, 10, 222.
https://doi.org/10.3389/fpsyt.2019.00222
[36]  Deng, D., Jian, C., Lei, L., et al. (2017) A Prenatal Interruption of DISC1 Function in the Brain Exhibits a Lasting Impact on Adult Behaviors, Brain Metabolism, and Interneuron Devel-opment. Oncotarget, 8, 84798-84817.
https://doi.org/10.18632/oncotarget.21381
[37]  Ouchi, Y., Banno, Y., Shimizu, Y., et al. (2013) Reduced Adult Hippocampal Neurogenesis and Working Memory Deficits in the Dgcr8-Deficient Mouse Model of 22q11.2 Dele-tion-Associated Schizophrenia Can Be Rescued by IGF2. Journal of Neuroscience, 33, 9408-9419.
https://doi.org/10.1523/JNEUROSCI.2700-12.2013
[38]  Casamassa, A., Ferrari, D., Gelati, M., et al. (2020) A Link between Genetic Disorders and Cellular Impairment, Using Human Induced Pluripotent Stem Cells to Reveal the Functional Consequences of Copy Number Variations in the Central Nervous System—A Close Look at Chromosome 15. International Journal of Molecular Sciences, 21, 1860.
https://doi.org/10.3390/ijms21051860
[39]  Kim, J.Y., Duan, X., Liu, C.Y., et al. (2009) DISC1 Regulates New Neuron Development in the Adult Brain via Modulation of AKT-mTOR Signaling through KIAA1212. Neuron, 63, 761-773.
https://doi.org/10.1016/j.neuron.2009.08.008
[40]  Terrillion, C.E., Abazyan, B., Yang, Z., et al. (2017) DISC1 in Astrocytes Influences Adult Neurogenesis and Hippocampus-Dependent Behaviors in Mice. Neuropsychopharmacology, 42, 2242-2251.
https://doi.org/10.1038/npp.2017.129
[41]  Talbot, K., Eidem, W., Tinsley, C., et al. (2004) Dysbindin-1 Is Re-duced in Intrinsic, Glutamatergic Terminals of the Hippocampal Formation in Schizophrenia. Journal of Clinical Investi-gation, 113, 1353-1363.
https://doi.org/10.1172/JCI200420425
[42]  Weickert, C., Rothmond, D., Hyde, T., et al. (2008) Reduced DTNBP1 (Dysbindin-1) mRNA in the Hippocampal Formation of Schizophrenia Patients. Schizophrenia Research, 98, 105-110.
https://doi.org/10.1016/j.schres.2007.05.041
[43]  Konopaske, G.T., Balu, D.T., Presti, K.T., et al. (2018) Dys-bindin-1 Contributes to Prefrontal Cortical Dendritic Arbor Pathology in Schizophrenia. Schizophrenia Research, 201, 270-277.
https://doi.org/10.1016/j.schres.2018.04.042
[44]  Wang, H., Yuan, Y., Zhang, Z., et al. (2014) Dys-bindin-1C Is Required for the Survival of Hilar Mossy Cells and the Maturation of Adult Newborn Neurons in Dentate Gyrus. Journal of Biological Chemistry, 289, 29060-29072.
https://doi.org/10.1074/jbc.M114.590927
[45]  Mei, L. and Nave, K.A. (2014) Neuregulin-ERBB Signaling in the Nervous System and Neuropsychiatric Diseases. Neuron, 83, 27-49.
https://doi.org/10.1016/j.neuron.2014.06.007
[46]  Dabbah-Assadi, F., Khatib, N., Ginsberg, Y., et al. (2021) Short-Term Effect of MgSO4 on the Expression of NRG-ErbB, Dopamine, GABA, and Glutamate Systems in the Fetal Rat Brain. Journal of Molecular Neuroscience, 71, 446-454.
https://doi.org/10.1007/s12031-020-01665-x
[47]  Unda, B.K., Kwan, V. and Singh, K.K. (2016) Neuregulin-1 Regulates Cortical Inhibitory Neuron Dendrite and Synapse Growth through DISC1. Neural Plasticity, 2016, Article ID: 7694385.
https://doi.org/10.1155/2016/7694385
[48]  G?tze, T., Soto-Bernardini, M.C., Zhang, M., et al. (2021) Hyperactivity Is a Core Endophenotype of Elevated Neuregulin-1 Signaling in Embryonic Glutamatergic Networks. Schizophrenia Bulletin, 47, 1409-1420.
https://doi.org/10.1093/schbul/sbab027
[49]  Pan, B., Huang, X.F. and Deng, C. (2011) Antipsychotic Treatment and Neuregulin 1-ErbB4 Signalling in Schizophrenia. Prog Neuropsychopharmacol Biological Psychiatry, 35, 924-930.
https://doi.org/10.1016/j.pnpbp.2011.04.002
[50]  Asrican, B., Paez-Gonzalez, P., Erb, J., et al. (2016) Cholinergic Circuit Control of Postnatal Neurogenesis. Neurogenesis (Austin), 3, e1127310.
https://doi.org/10.1080/23262133.2015.1127310
[51]  Ihrie, R.A. and Alvarez-Buylla, A. (2011) Lake-Front Prop-erty: A Unique Germinal Niche by the Lateral Ventricles of the Adult Brain. Neuron, 70, 674-686.
https://doi.org/10.1016/j.neuron.2011.05.004
[52]  Kim, J.Y., Liu, C.Y., Zhang, F., et al. (2012) Interplay between DISC1 and GABA Signaling Regulates Neurogenesis in Mice and Risk for Schizophrenia. Cell, 148, 1051-1064.
https://doi.org/10.1016/j.cell.2011.12.037
[53]  Toro, C.T. and Deakin, J.F. (2007) Adult Neurogenesis and Schiz-ophrenia: A Window on Abnormal Early Brain Development? Schizophrenia Research, 90, 1-14.
https://doi.org/10.1016/j.schres.2006.09.030
[54]  Moslem, M., Olive, J. and Falk, A. (2019) Stem Cell Models of Schizophrenia, What Have We Learned and What Is the Potential? Schizophrenia Research, 210, 3-12.
https://doi.org/10.1016/j.schres.2018.12.023
[55]  Hong, S., Yi, J.H., Lee, S., et al. (2019) Defective Neurogenesis and Schizophrenia-Like Behavior in PARP-1-Deficient Mice. Cell Death & Disease, 10, 943.
https://doi.org/10.1038/s41419-019-2174-0
[56]  Sun, G., Cui, Q. and Shi, Y. (2017) Nuclear Receptor TLX in Development and Diseases. Current Topics in Developmental Biology, 125, 257-273.
https://doi.org/10.1016/bs.ctdb.2016.12.003
[57]  Pieper, A.A., Wu, X., Han, T.W., et al. (2005) The Neuronal PAS Domain Protein 3 Transcription Factor Controls FGF-Mediated Adult Hippocampal Neurogenesis in Mice. Pro-ceedings of the National Academy of Sciences of the United States of America, 102, 14052-14057.
https://doi.org/10.1073/pnas.0506713102
[58]  Schreiber, R. and Newman-Tancredi, A. (2014) Improving Cogni-tion in Schizophrenia with Antipsychotics That Elicit Neurogenesis through 5-HT(1A) Receptor Activation. Neurobiolo-gy of Learning and Memory, 110, 72-80.
https://doi.org/10.1016/j.nlm.2013.12.015
[59]  Kobayashi, M., Hayashi, Y., Fujimoto, Y., et al. (2018) Decreased Parvalbumin and Somatostatin Neurons in Medial Prefrontal Cortex in BRINP1-KO Mice. Neuroscience Letters, 683, 82-88.
https://doi.org/10.1016/j.neulet.2018.06.050
[60]  Hur, E.M. and Zhou, F.Q. (2010) GSK3 Signalling in Neural Development. Nature Reviews Neuroscience, 11, 539-551.
https://doi.org/10.1038/nrn2870
[61]  Na, K.S., Jung, H.Y. and Kim, Y.K. (2014) The Role of Pro-Inflammatory Cytokines in the Neuroinflammation and Neurogenesis of Schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 48, 277-286.
https://doi.org/10.1016/j.pnpbp.2012.10.022
[62]  Jena, M., Ranjan, R., Mishra, B.R., et al. (2019) Effect of Lurasidone vs Olanzapine on Neurotrophic Biomarkers in Unmedicated Schizophrenia: A Randomized Controlled Trial. Journal of Psychiatric Research, 112, 1-6.
https://doi.org/10.1016/j.jpsychires.2019.02.007
[63]  Kalkman, H.O. (2009) Altered Growth Factor Signaling Pathways as the Basis of Aberrant Stem Cell Maturation in Schizophrenia. Pharmacology & Therapeutics, 121, 115-122.
https://doi.org/10.1016/j.pharmthera.2008.11.002
[64]  Mesman, S., Bakker, R. and Smidt, M.P. (2020) Tcf4 Is Required for Correct Brain Development during Embryogenesis. Molecular and Cellular Neuroscience, 106, Article ID: 103502.
https://doi.org/10.1016/j.mcn.2020.103502
[65]  De Jesús-Cortés, H., Rajadhyaksha, A.M. and Pieper, A.A. (2016) Cacna1c: Protecting Young Hippocampal Neurons in the Adult Brain. Neurogenesis (Austin), 3, e1231160.
https://doi.org/10.1080/23262133.2016.1231160
[66]  Nandra, K.S. and Agius, M. (2012) The Differences be-tween Typical and Atypical Antipsychotics: The Effects on Neurogenesis. Psychiatria Danubina, 24, S95-S99.
[67]  Haan, N., Westacott, L.J., Carter, J., et al. (2021) Haploinsufficiency of the Schizophrenia and Autism Risk Gene Cyfip1 Causes Abnormal Postnatal Hippocampal Neurogenesis through Microglial and Arp2/3 Mediated Ac-tin Dependent Mechanisms. Translational Psychiatry, 11, 313.
https://doi.org/10.1038/s41398-021-01415-6
[68]  Shang, Y., Wang, X., Li, F., et al. (2019) rTMS Ameliorates Prenatal Stress-Induced Cognitive Deficits in Male-Offspring Rats Associated with BDNF/TrkB Signaling Pathway. Neurorehabilitation and Neural Repair, 33, 271-283.
https://doi.org/10.1177/1545968319834898
[69]  Zhao, X.F., Kohen, R., Parent, R., et al. (2018) PlexinA2 For-ward Signaling through Rap1 GTPases Regulates Dentate Gyrus Development and Schizophrenia-Like Behaviors. Cell Reports, 22, 456-470.
https://doi.org/10.1016/j.celrep.2017.12.044
[70]  Stilo, S.A. and Murray, R.M. (2019) Non-Genetic Factors in Schizophrenia. Current Psychiatry Reports, 21, 100.
https://doi.org/10.1007/s11920-019-1091-3
[71]  Coe, C., Kramer, M., Czéh, B., et al. (2003) Prenatal Stress Di-minishes Neurogenesis in the Dentate Gyrus of Juvenile Rhesus Monkeys. Biological Psychiatry, 54, 1025-1034.
https://doi.org/10.1016/S0006-3223(03)00698-X
[72]  Lemaire, V., Koehl, M., Le Moal, M., et al. (2000) Prenatal Stress Produces Learning Deficits Associated with an Inhibition of Neurogenesis in the Hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 97, 11032-11037.
https://doi.org/10.1073/pnas.97.20.11032
[73]  Patterson, P. (2009) Immune Involvement in Schizophrenia and Au-tism: Etiology, Pathology and Animal Models. Behavioural Brain Research, 204, 313-321.
https://doi.org/10.1016/j.bbr.2008.12.016
[74]  Smith, P., Blumenthal, J., Hoffman, B., et al. (2010) Aerobic Exer-cise and Neurocognitive Performance: A Meta-Analytic Review of Randomized Controlled Trials. Psychosomatic Medi-cine, 72, 239-252.
https://doi.org/10.1097/PSY.0b013e3181d14633
[75]  Yi, Y., Song, Y. and Lu, Y. (2020) Parvalbumin Interneu-ron Activation-Dependent Adult Hippocampal Neurogenesis Is Required for Treadmill Running to Reverse Schizophre-nia-Like Phenotypes. Frontiers in Cell and Developmental Biology, 8, 24.
https://doi.org/10.3389/fcell.2020.00024
[76]  Kurebayashi, Y., Mori, K. and Otaki, J. (2022) Effects of Mild-Intensity Physical Exercise on Neurocognition in Inpatients with Schizophrenia: A Pilot Randomized Controlled Trial. Perspectives in Psychiatric Care, 58, 1037-1047.
https://doi.org/10.1111/ppc.12896
[77]  Epp, J.R., Spritzer, M.D. and Galea, L.A. (2007) Hippocampus-Dependent Learning Promotes Survival of New Neurons in the Dentate Gyrus at a Specific Time during Cell Maturation. Neurosci-ence, 149, 273-285.
https://doi.org/10.1016/j.neuroscience.2007.07.046
[78]  Huo, Y., Li, S., Liu, J., et al. (2019) Functional Genomics Reveal Gene Regulatory Mechanisms Underlying Schizophrenia Risk. Nature Communications, 10, 670.
https://doi.org/10.1038/s41467-019-08666-4
[79]  Richetto, J. and Meyer, U. (2021) Epigenetic Modifications in Schizophrenia and Related Disorders: Molecular Scars of Environmental Exposures and Source of Phenotypic Variability. Biological Psychiatry, 89, 215-226.
https://doi.org/10.1016/j.biopsych.2020.03.008
[80]  Takahashi, K. and Yamanaka, S. (2006) Induction of Pluripo-tent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 126, 663-676.
https://doi.org/10.1016/j.cell.2006.07.024
[81]  Noh, H., Shao, Z., Coyle, J.T., et al. (2017) Modeling Schizophre-nia Pathogenesis Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Biochimica et Biophysica Ac-ta—Molecular Basis of Disease, 1863, 2382-2387.
https://doi.org/10.1016/j.bbadis.2017.06.019
[82]  Osacka, J., Kiss, A., Bacova, Z., et al. (2022) Effect of Haloperidol and Olanzapine on Hippocampal Cells’ Proliferation in Animal Model of Schizophrenia. International Journal of Molecular Sciences, 23, 7711.
https://doi.org/10.3390/ijms23147711
[83]  Song, J.C., Seo, M.K., Park, S.W., et al. (2016) Differential Effects of Olanzapine and Haloperidol on MK-801-Induced Memory Impairment in Mice. Clinical Psychopharmacology and Neu-roscience, 14, 279-285.
https://doi.org/10.9758/cpn.2016.14.3.279
[84]  Bortolasci, C.C., Spolding, B., Kidnapillai, S., et al. (2020) Tran-scriptional Effects of Psychoactive Drugs on Genes Involved in Neurogenesis. International Journal of Molecular Sci-ences, 21, 8333.
https://doi.org/10.3390/ijms21218333
[85]  Chikama, K., Yamada, H., Tsukamoto, T., et al. (2017) Chronic Atypi-cal Antipsychotics, but Not Haloperidol, Increase Neurogenesis in the Hippocampus of Adult Mouse. Brain Research, 1676, 77-82.
https://doi.org/10.1016/j.brainres.2017.09.006
[86]  Xue, F., Chen, Y.C., Zhou, C.H., et al. (2017) Risperidone Ameliorates Cognitive Deficits, Promotes Hippocampal Proliferation, and Enhances Notch Signaling in a Murine Model of Schizophrenia. Pharmacology Biochemistry and Behavior, 163, 101-109.
https://doi.org/10.1016/j.pbb.2017.09.010
[87]  Mishra, B.R., Agrawal, K., Biswas, T., et al. (2022) Comparison of Acute Followed by Maintenance ECT vs Clozapine on Psychopathology and Regional Cerebral Blood Flow in Treat-ment-Resistant Schizophrenia: A Randomized Controlled Trial. Schizophrenia Bulletin, 48, 814-825.
https://doi.org/10.1093/schbul/sbac027
[88]  Sorri, A., J?rventausta, K., Kampman, O., et al. (2021) Electroconvul-sive Therapy Increases Temporarily Plasma Vascular Endothelial Growth Factor in Patients with Major Depressive Dis-order. Brain and Behavior, 11, e02001.
https://doi.org/10.1002/brb3.2001
[89]  Ito, M., Seki, T., Liu, J., et al. (2010) Effects of Repeated Electroconvulsive Seizure on Cell Proliferation in the Rat Hippocampus. Synapse, 64, 814-821.
https://doi.org/10.1002/syn.20796
[90]  Guo, Q., Li, C. and Wang, J. (2017) Updated Review on the Clinical Use of Repetitive Transcranial Magnetic Stimulation in Psychiatric Disorders. Neuroscience Bulletin, 33, 747-756.
https://doi.org/10.1007/s12264-017-0185-3
[91]  Xie, Y., Cai, Y., Guan, M., et al. (2022) The Alternations of Nu-cleus Accumbent in Schizophrenia Patients with Auditory Verbal Hallucinations during Low-Frequency rTMS Treatment. Frontiers in Psychiatry, 13, Article ID: 971105.
https://doi.org/10.3389/fpsyt.2022.971105
[92]  Sathappan, A., Luber, B. and Lisanby, S. (2019) The Dynamic Duo: Combining Noninvasive Brain Stimulation with Cognitive Interventions. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 89, 347-360.
https://doi.org/10.1016/j.pnpbp.2018.10.006
[93]  Ueyama, E., Ukai, S., Ogawa, A., et al. (2011) Chronic Repeti-tive Transcranial Magnetic Stimulation Increases Hippocampal Neurogenesis in Rats. Psychiatry and Clinical Neurosci-ences, 65, 77-81.
https://doi.org/10.1111/j.1440-1819.2010.02170.x
[94]  Girdler, S., Confino, J. and Woesner, M. (2019) Exercise as a Treatment for Schizophrenia: A Review. Psychopharmacology Bulletin, 49, 56-69.
[95]  Fabel, K., Wolf, S.A., Ehninger, D., et al. (2009) Additive Effects of Physical Exercise and Environmental Enrichment on Adult Hippocampal Neurogenesis in Mice. Frontiers in Neuroscience, 3, 50.
https://doi.org/10.3389/neuro.22.002.2009
[96]  Maurus, I., Roell, L., Keeser, D., et al. (2022) Fitness Is Positively Associated with Hippocampal Formation Subfield Volumes in Schizophrenia: A Multiparametric Magnetic Resonance Imaging Study. Translational Psychiatry, 12, 388.
https://doi.org/10.1038/s41398-022-02155-x
[97]  Nuechterlein, K.H., Mcewen, S.C., Ventura, J., et al. (2022) Aerobic Exercise Enhances Cognitive Training Effects in First-Episode Schizophrenia: Randomized Clinical Trial Demonstrates Cognitive and Functional Gains. Psychological Medicine, 1-11.
https://doi.org/10.1017/S0033291722001696
[98]  Shimada, T., Ito, S., Makabe, A., et al. (2022) Aerobic Exercise and Cognitive Functioning in Schizophrenia: An Updated Systematic Review and Meta-Analysis. Psychiatry Research, 314, Article ID: 114656.
https://doi.org/10.1016/j.psychres.2022.114656
[99]  Kempermann, G., Kuhn, H.G. and Gage, F.H. (1997) More Hippocampal Neurons in Adult Mice Living in an Enriched Environment. Nature, 386, 493-495.
https://doi.org/10.1038/386493a0
[100]  Kang, M.S., Kim, W., Kim, T.H., et al. (2020) Changes of Fat-Mass and Obesity-Associated Protein Expression in the Hippocampus in Animal Models of High-Fat Diet-Induced Obesity and D-Galactose-Induced Aging. Laboratory Animal Research, 36, 20.
https://doi.org/10.1186/s42826-020-00046-0
[101]  Heberden, C. (2016) Modulating Adult Neurogenesis through Dietary Interventions. Nutrition Research Reviews, 29, 163-171.
https://doi.org/10.1017/S0954422416000081
[102]  Aucoin, M., Lachance, L., Cooley, K., et al. (2020) Diet and Psychosis: A Scoping Review. Neuropsychobiology, 79, 20-42.
https://doi.org/10.1159/000493399
[103]  马雪倩, 岳伟华. 限时饮食可能是改善精神分裂症患者代谢的新兴干预措施[J]. 国际神经精神科学杂志, 2021(10): 42-51.
[104]  Osumi, N., Guo, N., Matsumata, M., et al. (2015) Neurogenesis and Sensorimotor Gating: Bridging a Mi-crophenotype and an Endophenotype. Current Molecular Medicine, 15, 129-137.
https://doi.org/10.2174/1566524015666150303002834
[105]  Mattei, D., Djodari-Irani, A., Hadar, R., et al. (2014) Minocycline Rescues Decrease in Neurogenesis, Increase in Microglia Cytokines and Deficits in Sensorimotor Gating in an Animal Model of Schizophrenia. Brain, Behavior, and Immunity, 38, 175-184.
https://doi.org/10.1016/j.bbi.2014.01.019
[106]  Kardashev, A., Ratner, Y. and Ritsner, M.S. (2018) Add-On Preg-nenolone with L-Theanine to Antipsychotic Therapy Relieves Negative and Anxiety Symptoms of Schizophrenia: An 8-Week, Randomized, Double-Blind, Placebo-Controlled Trial. Clinical Schizophrenia & Related Psychoses, 12, 31-41.
https://doi.org/10.3371/CSRP.KARA.070415
[107]  Marx, C.E., Bradford, D.W., Hamer, R.M., et al. (2011) Preg-nenolone as a Novel Therapeutic Candidate in Schizophrenia: Emerging Preclinical and Clinical Evidence. Neuroscience, 191, 78-90.
https://doi.org/10.1016/j.neuroscience.2011.06.076
[108]  Luo, C., Xu, H. and Li, X.M. (2005) Quetiapine Reverses the Suppression of Hippocampal Neurogenesis Caused by Repeated Restraint Stress. Brain Research, 1063, 32-39.
https://doi.org/10.1016/j.brainres.2005.09.043

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413