全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

棘胸蛙腐皮症病原菌的鉴定及疫苗免疫效果研究
Identification of Pathogen of Skin Rot of Rana spinosa and Study on Immune Effect of Vaccine

DOI: 10.12677/AMB.2023.121005, PP. 33-44

Keywords: 棘胸蛙,弗氏柠檬酸杆菌,分离鉴定,药敏试验,疫苗
Quasipaa spinosa
, Citrobacter freundii, Isolation and Identification, Drug Sensitivity Test, Vaccine

Full-Text   Cite this paper   Add to My Lib

Abstract:

为确定棘胸蛙(Quasipaa spinosa)腐皮病的病原,并为生产中防治该病提供理论依据,本研究从病蛙病灶处分离病原菌,进行人工感染和病原菌的形态特征、理化特性及分子生物学分析,同时开展药敏试验和疫苗免疫防治试验。结果表明,从患病棘胸蛙病灶处分离得到的优势菌QS01,通过人工回归感染试验证实该菌为棘胸蛙腐皮病的病原菌,结合其表型特征及16S rRNA、gyrB基因序列分析判定为弗氏柠檬酸杆菌(Citrobacter freundii)。药敏试验结果显示,该菌对恩诺沙星、氯霉素和头孢他啶等8种抗生素敏感,而对其他抗生素敏感度低或具有一定的抗性。采用注射、浸泡和喷雾方式给蛙接种QS01甲醛灭活疫苗,三组的平均效价均于第20 d时达到峰值,血清抗体效价最高分别为1:64~128 (101.6)、1:16~32 (20.2)和1:16~32 (16),明显高于对照组,经攻毒后免疫保护率分别达到100%、85.71%和71.43%。试验发现弗氏柠檬酸杆菌可感染棘胸蛙导致其腐皮病,使用疫苗对此病的防治是有效可行的。
In order to determine the pathogen of the skin rot disease of Rana spinosa and provide theoretical basis for the prevention and control of the disease in production, this study isolated the pathogenic bacteria from the diseased frog focus, carried out artificial infection and the morphological characteristics, physical and chemical characteristics and molecular biological analysis of the pathogenic bacteria, and carried out drug sensitivity test and vaccine immunity and control test. The results showed that the dominant bacteria QS01 isolated from the diseased lesions of Rana spinosa was confirmed to be the pathogen of skin rot disease of Rana spinosa by artificial regression infection test. Combined with its phenotypic characteristics and 16S rRNA, gyrB gene sequence analysis, it was determined to be Citrobacter freundii. The medicine sensitive test result showed that the bacteria is sensitive to eight kinds of antibiotics including Enrofloxacin, Chloramphenicol, Ceftazidimeetc, but lowly sensitive or resistant to other tested antimicrobial agents. Adopting these ways included injection, immersion and atomizing to inoculate frog with vaccine named QS01 inactivated by formaldehyde, average titer of three immunity groups reached the peak in the 20 d. The highest serum antibody titers were 1:64~128 (101.6), 1:16~32 (20.2) and 1:16~32 (16), which were significantly higher than those of the control group. The immune protection rate for Q. spinosa after injection, immersion and spray of QS01 inactivated vaccine can reach 100%, 85.71% and 71.43%. Our research shows that Citrobacter frederii is the pathogen of skin rot disease of Rana spinosa, and it is effective and feasible to use vaccine to control ulcerative skin disease.

References

[1]  费梁, 叶昌媛, 江建平. 中国两栖动物及其分布彩色图鉴[M]. 成都: 四川科技出版社, 2012.
[2]  肖波. 棘胸蛙腐皮病病原分离鉴定与流行病学调查[D]: [硕士学位论文]. 长沙: 湖南农业大学, 2020.
[3]  舒新华, 肖克宇, 金燮理, 陈可毅, 黄志坚. 牛蛙腐皮病致病细菌的初步研究[J]. 水产学报, 1997(S1): 71-76.
[4]  农业部《渔药手册》编撰委员会. 渔药手册[M]. 北京: 中国科学技术出版社, 1998: 41.
[5]  Ferreira, R., de Souza Fonseca, L., Afonso, A.M., da Silva, M.G., Saad, M.H. and Lilenbaum, W. (2006) A Report of Mycobacteriosis Caused by Mycobacterium marinumin Bullfrogs (Rana catesbeiana). The Veterinary Journal, 171, 177-180.
https://doi.org/10.1016/j.tvjl.2004.08.018
[6]  Green, S.L., Lifland, B.D., Bouley, D.M., Brown, B.A., Wallace, R.J. and Ferrell, J.E. (2000) Disease Attributed to Mycobacterium chelonae in South African Clawed Frogs (Xenopus laevis). Comparative Medicine, 50, 675-679.
[7]  Fremont-Rahl, J.J., Ek, C., Williamson, H.R., Small, P.L.C., Fox, J.G. and Muthupalani, S. (2011) Mycobacterium liflandii Outbreak in a Research Colony of Xenopus (Silurana) tropicalis Frogs. Veterinary Pathology, 48, 856-867.
https://doi.org/10.1177/0300985810388520
[8]  Trott, K.A., Stacy, B.A., Lifland, B.D., Diggs, H.E., Hariand, R.M., Khokha, M.K., Grammer, T.C. and Parker, J.M. (2004) Characterization of a Mycobacterium ulceranslike Infection in a Colony of African Tropical Clawed Frogs (Xenopus tropicalis). Comparative Medicine, 54, 309-317.
[9]  Chai, N., Deforges, L., Sougakoff, W., Truffot-Pernot, C., Luze, A.D. and Demeneix, B. (2006) Mycobacterium szulgai Infection in a Captive Population of African Clawed Frogs (Xenopus tropicalis). Journal of Zoo and Wildlife Medicine, 37, 55-58.
https://doi.org/10.1638/04-064.1
[10]  乔志刚, 李用芳, 张会永. 美国青蛙腐皮病病原菌的分离鉴定和致病因素研究[J]. 水产科技情报, 2000(2): 70-72.
[11]  王瑞君, 熊筱娟. 棘胸蛙烂皮病奇异变形杆菌的分离、鉴定及对药物敏感性研究[J]. 淡水渔业, 2012, 42(4): 31-34.
[12]  梁淡如, 潘淦. 蛙鳖养殖技术[M]. 广州: 广东高等教育出版社, 1998: 59.
[13]  胡霭臻, 俞艳, 周超, 王小航, 郑善坚. 棘胸蛙柠檬酸杆菌的分子鉴定及防治技术[J]. 浙江农业科学, 2018, 59(11): 2101-2105.
[14]  东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
[15]  Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T. and Williams, S.T. (1994) Bergey’s Manual of Determinative Bacteriology. Williams and Wilikins, Baltimore.
[16]  Ward, D.M., Weller, R. and Bateson, M.M. (1990) 16S rRNA Sequences Reveal Numerous Uncultured Microorganisms in a Natural Community. Nature, 345, 63-65.
https://doi.org/10.1038/345063a0
[17]  Yamamoto, S. and Harayama, S. (1995) PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putidastrains. Applied and Environmental Microbiology, 61, 1104-1109.
https://doi.org/10.1128/aem.61.3.1104-1109.1995
[18]  Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24, 1596-1599.
https://doi.org/10.1093/molbev/msm092
[19]  Watts, J.L. (2008) Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Approved Standard. National Committee for Clinical Laboratory Standards. Clinical and Laboratory Standards Institute.
[20]  Bandin, I., Rivas, C., Santos, Y., Secombes, C.J., Barja, J.L. and Ellis, A.E. (1995) Effect of Serum Factors on the Survival of Renibacterium salmoninarum within Rainbow Trout Macrophages. Diseases of Aquatic Organisms, 23, 221-227.
https://doi.org/10.3354/dao023221
[21]  Austin, B. and Austin, D.A. (1999) Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. Ellis Horwood Limited, Chichester.
[22]  高正勇, 曾令兵, 孟彦, 刘小玲, 张波. 患病大鲵中弗氏柠檬酸杆菌的分离与鉴定[J]. 微生物学报, 2012, 52(2): 169-176.
[23]  Mauel, M.J., Miller, D.L., Frazier, K.S. and Hines, M.E. (2002) Bacterial Pathogens Isolated from Cultured Bullfrogs (Rana castesbeiana). Journal of Veterinary Diagnostic Investigation, 14, 431-433.
https://doi.org/10.1177/104063870201400515
[24]  杨移斌, 夏永涛, 赵蕾, 郑卫东, 邱军强, 曹海鹏, 胡鲲, 杨先乐. 鲟源弗氏柠檬酸杆菌分离鉴定及药敏特性研究[J]. 水生生物学报, 2013(4): 766-771.
[25]  张冬星, 康元环, 田佳鑫, 陈亨利, 安鼎杰, 许瑞, 孙武文, 单晓枫, 钱爱东. 团头鲂致病性弗氏柠檬酸杆菌的分离鉴定及药敏试验[J]. 中国兽医科学, 2016, 46(12): 1589-1595.
[26]  吕耀平, 金晶, 施倩, 陈洁, 刘子明, 陆君, 黄富友, 傅旭豪. 棘胸蛙致病性蜡样芽孢杆菌的分离鉴定及病理组织观察[J]. 水生生物学报, 2018, 42(1): 26-32.
[27]  Church, D.L., Cerutti, L., Gürtler, A., Griener, T., Zelazny, A. and Emler, S. (2020) Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clinical Microbiology Reviews, 33, e00053-19.
https://doi.org/10.1128/CMR.00053-19
[28]  Sanschagrin, S. and Yergeau, E. (2014) Next-Generation Sequencing of 16S Ribosomal RNA Gene Amplicons. Journal of Visualized Experiments, 90, e51709.
https://doi.org/10.3791/51709-v
[29]  白志鹏, 曹美娜, 张娜, 陈开廷, 马静, 刘玉婷, 马婧, 高金亮. 16S rRNA基因序列用于临床非典型细菌的补充鉴定[J]. 中国实验诊断学, 2022, 26(6): 914-917.
[30]  Soler, L., Yá?ez, M.A., Chacon, M.R., Aguilera-Arreola, M.G., Catalán, V., Figueras, M.J. and Martínez-Murcia, A.J. (2004) Phylogenetic Analysis of the Genus Aeromonas Based on Two Housekeeping Genes. International Journal of Systematic and Evolutionary Microbiology, 54, 1511-1519.
https://doi.org/10.1099/ijs.0.03048-0
[31]  曹朕娇, 丁诗华, 凌空, 金娟, 吴兴镇. 大鲵源弗氏柠檬酸杆菌的分离鉴定及胞外酶活性研究[J]. 西南大学学报(自然科学版), 2016, 38(5): 13-18.
[32]  周永灿, 朱传华, 陈国华, 苏文强, 唐泽锋. 虎纹蛙白内障病病原的分离鉴定及其免疫防治[J]. 上海水产大学学报, 2001, 10(1): 16-21.
[33]  周末, 李艳茹, 曹世诺, 王开艳, 李太元. 嗜水气单胞菌灭活苗对林蛙免疫效果的初步研究[J]. 水产科学, 2009, 28(3): 150-152.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413