全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

主–客体化学中大环主体分子的研究进展
Research Progress of Macrocyclic Molecules in Host-Guest Chemistry

DOI: 10.12677/JOCR.2023.111003, PP. 17-25

Keywords: 超分子化学,非共价相互作用,主–客体相互作用,大环主体分子
Supramolecular Chemistry
, Non-Covalent Interactions, Host-Guest Interactions, Macrocyclic Host Molecules

Full-Text   Cite this paper   Add to My Lib

Abstract:

超分子化学专注于通过弱非共价相互作用,包括π-π相互作用、氢键相互作用、疏水相互作用、主–客体相互作用等,对各种结构单元进行分子识别和自组装。非共价相互作用、主客体识别和刺激响应自组装结构之间的关系具有重要意义,在各种非共价相互作用的驱动下,基于主客体相互作用的超分子体系由于大环主体的引入而表现出迷人的性质。本文研究了冠醚、环糊精、柱芳烃以及葫芦脲等大环主体分子的进展,同时近年来,合成了新的大环主体,极大地促进了超分子化学的发展。
Supramolecular chemistry focuses on molecular recognition and self-assembly of various structural units through weak non-covalent interactions, including π-π interactions, hydrogen bond interactions, hydrophobic interactions, and host-guest interactions. The relationship between non- covalent interactions, host-guest recognition, and stimulus-response self-assembly structures are of great significance. Driven by various non-covalent interactions, supramolecular systems based on host-guest interactions exhibit fascinating properties due to the introduction of macrocyclic agents. In this paper, the progress of macrocyclic main molecules such as crown ether, cyclodextrin, column aromatics and cucurbit[n]urils has been studied. In recent years, new macrocyclic main molecules have been synthesized, which has greatly promoted the development of supramolecular chemistry.

References

[1]  Lehn, J.M. (1978) Cryptates: Inclusion Complexes of Macropolycyclic Receptor Molecules. Pure and Applied Chemistry, 50, 871-892.
https://doi.org/10.1351/pac197850090871
[2]  Pedersen, C.J. (1988) The Discovery of Crown Ethers (Noble Lecture). Angewandte Chemie International Edition in English, 27, 1021-1027.
https://doi.org/10.1002/anie.198810211
[3]  Cram, D.J. (1988) The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture). Angewandte Chemie International Edition in English, 27, 1009-1020.
https://doi.org/10.1002/anie.198810093
[4]  Lehn, J.-M. (1988) Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angewandte Chemie International Edition in English, 27, 89-112.
https://doi.org/10.1002/anie.198800891
[5]  Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J. and Scherman, O.A. (2015) Cucurbituril-Based Molecular Recognition. Chemical Reviews, 115, 12320-12406.
https://doi.org/10.1021/acs.chemrev.5b00341
[6]  Cram, D.J. and Cram, J.M. (1974) Host-Guest Chemistry: Complexes Between Organic Compounds Simulate the Substrate Selectivity of Enzymes. Science, 183, 803-809.
https://doi.org/10.1126/science.183.4127.803
[7]  Chen, J., Peng, Q., Peng, X., Zhang, H. and Zeng, H. (2022) Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chemical Reviews, 122, 14594-14678.
https://doi.org/10.1021/acs.chemrev.2c00215
[8]  Dong, S., Zheng, B., Wang, F. and Huang, F. (2014) Supramolecular Polymers Constructed from Macrocycle-Based Host-Guest Molecular Recognition Motifs. Accounts of Chemical Research, 47, 1982-1994.
https://doi.org/10.1021/ar5000456
[9]  Li, Z.-Y., Zhang, Y., Zhang, C.-W., Chen, L.-J., Wang, C., Tan, H., Yu, Y., Li, X. and Yang, H.-B. (2014) Cross- Linked Supramolecular Polymer Gels Constructed from Discrete Multi-Pillar[5]arene Metallacycles and Their Multiple Stimuli-Responsive Behavior. Journal of the American Chemical Society, 136, 8577-8589.
https://doi.org/10.1021/ja413047r
[10]  Zhang, C.-W., Ou, B., Jiang, S.-T., Yin, G.-Q., Chen, L.-J., Xu, L., Li, X. and Yang, H.-B. (2018) Cross-Linked AIE Supramolecular Polymer Gels with Multiple Stimuli-Responsive Behaviours Constructed by Hierarchical Self-Assembly. Polymer Chemistry, 9, 2021-2030.
https://doi.org/10.1039/C8PY00226F
[11]  Yang, H., Yuan, B., Zhang, X. and Scherman, O.A. (2014) Supramolecular Chemistry at Interfaces: Host-Guest Interactions for Fabricating Multifunctional Biointerfaces. Accounts of Chemical Research, 47, 2106-2115.
https://doi.org/10.1021/ar500105t
[12]  Zheng, Z., Geng, W.-C., Xu, Z. and Guo, D.-S. (2019) Macrocyclic Amphiphiles for Drug Delivery. Israel Journal of Chemistry, 59, 913-927.
https://doi.org/10.1002/ijch.201900032
[13]  Tu, Y., Peng, F., Adawy, A., Men, Y., Abdelmohsen, L.K. and Wilson, D.A. (2016) Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chemical Reviews, 116, 2023-2078.
https://doi.org/10.1021/acs.chemrev.5b00344
[14]  You, L., Zha, D. and Anslyn, E.V. (2015) Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chemical Reviews, 115, 7840-7892.
https://doi.org/10.1021/cr5005524
[15]  Cheng, H.B., Li, Y., Tang, B.Z. and Yoon, J. (2020) Assembly Strategies of Organic-Based Imaging Agents for Fluorescence and Photoacoustic Bioimaging Applications. Chemical Society Reviews, 49, 21-31.
https://doi.org/10.1039/C9CS00326F
[16]  Liu, Z., Nalluri, S.K.M. and Stoddart, J.F. (2017) Surveying Macrocyclic Chemistry: From Flexible Crown Ethers to Rigid Cyclophanes. Chemical Society Reviews, 46, 2459-2478.
https://doi.org/10.1039/C7CS00185A
[17]  Mohamed, M. A., Fallahi, A., El-Sokkary, A. M., et al. (2019) Stimuli-Responsive Hydrogels for Manipulation of Cell Microenvironment: From Chemistry to Biofabrication Technology. Progress in Polymer Science, 98, Article ID: 101147.
https://doi.org/10.1016/j.progpolymsci.2019.101147
[18]  Suda, M., Takashina, N., Namuangruk, S., Kungwan, N., Sakurai, H. and Yamamoto, H.M. (2017) N-Type Superconductivity in an Organic Mott Insulator Induced by Light-Driven Electron-Doping. Advanced Materials, 29, Article ID: 1606833.
https://doi.org/10.1002/adma.201606833
[19]  Yun, C., You, J., Kim, J., Huh, J. and Kim, E. (2009) Photochromic Fluorescence Switching From Diarylethenes and Its Applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10, 111-129.
https://doi.org/10.1016/j.jphotochemrev.2009.05.002
[20]  Wang, F., Ji, W., Yang, P. and Feng, C.L. (2019) Inversion of Circularly Polarized Luminescence of Nanofibrous Hydrogels through Co-assembly with Achiral Coumarin Derivatives. ACS Nano, 13, 7281-7290.
https://doi.org/10.1021/acsnano.9b03255
[21]  Vapaavuori, J., Bazuin, C. G. and Priimagi, A. (2018) Supramolecular Design Principles for Efficient Photoresponsive Polymer-Azobenzene Complexes. Journal of Materials Chemistry C, 6, 2168-2188.
https://doi.org/10.1039/C7TC05005D
[22]  Boelke, J. and Hecht, S. (2019) Designing Molecular Photoswitches for Soft Materials Applications. Advanced Optical Materials, 7, Article ID: 1900404.
https://doi.org/10.1002/adom.201900404
[23]  Pedersen, C.J. (1967) Cyclic Polyethers and Their Complexes with Metal Salts. Journal of the American Chemical Society, 89, 2495-2496.
https://doi.org/10.1021/ja00986a052
[24]  Dietrich, B., Lehn, J.M. and Sauvage, J.P. (1969) Diaza-Polyoxa-Macrocycles et Macrobicycles. Tetrahedron Letters, 10, 2885-2888.
https://doi.org/10.1016/S0040-4039(01)88299-X
[25]  Helgeson, R.C., Koga, K., Timko, J.M. and Cram, D.J. (1973) Complete Optical Resolution by Differential Complexation in Solution Between a Chiral Cyclic Polyether and an .Alpha.-Amino Acid. Journal of the American Chemical Society, 95, 3021-3023.
https://doi.org/10.1021/ja00790a052
[26]  Izatt, R.M., Bradshaw, J.S., Nielsen, S.A., Lamb, J.D., Christensen, J.J. and Sen, D. (1985) Thermodynamic and Kinetic Data for Cation-Macrocycle Interaction. Chemical Reviews, 85, 271-339.
https://doi.org/10.1021/cr00068a003
[27]  Mai, Y., An, Z. and Liu, S. (2022) Self-Assembled Materials and Applications. Macromolecular Rapid Communications, 43, Article ID: 2200481.
https://doi.org/10.1002/marc.202200481
[28]  Tian, B. and Liu, J. (2020) The Classification and Application of Cyclodextrin Polymers: A Review. New Journal of Chemistry, 44, 9137-9148.
https://doi.org/10.1039/C9NJ05844C
[29]  Liu, Q., Zhou, Y., Lu, J. and Zhou, Y. (2020) Novel Cyclodextrin-Based Adsorbents for Removing Pollutants from Wastewater: A Critical Review. Chemosphere, 241, Article ID: 125043.
https://doi.org/10.1016/j.chemosphere.2019.125043
[30]  Tian, B., Liu, Y. and Liu, J. (2021) Smart Stimuli-Responsive Drug Delivery Systems Based on Cyclodextrin: A Review. Carbohydrate Polymers, 251, Article ID: 116871.
https://doi.org/10.1016/j.carbpol.2020.116871
[31]  Takashima, Y., Hatanaka, S., Otsubo, M., Nakahata, M., Kakuta, T., Hashidzume, A., Yamaguchi, H. and Harada. A. (2012) Expansion-Contraction of Photoresponsive Artificial Muscle Regulated by Host-Guest Interactions. Nature Communications, 3, Article No. 1270.
https://doi.org/10.1038/ncomms2280
[32]  Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. and Nakamoto, Y. (2008) J. Para-Bridged Symmetrical Pillar[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host-Guest Property. Journal of the American Chemical Society, 130, 5022-5023.
https://doi.org/10.1021/ja711260m
[33]  Song, N., Kakuta, T., Yamagishi, T.A., Yang, Y.W. and Ogoshi, T. (2018) Molecular-Scale Porous Materials Based on Pillar[n]arenes. Chem, 4, 2029-2053.
https://doi.org/10.1016/j.chempr.2018.05.015
[34]  Akiba, U., Minaki, D. and Anzai, J.-I. (2018) Host-Guest Chemistry in Layer-by-Layer Assemblies Containing Calix[n]arenes and Cucurbit[n]urils: A Review. Polymers, 10, Article No. 130.
https://doi.org/10.3390/polym10020130
[35]  Chang, J.-X., Zhao, Q.-H., Kang, L., Li, H.-M., Xie, M.-R. and Liao, X.-J. (2016) Multiresponsive Supramolecular Gel Based on Pillararene-Containing Polymers. Macromolecules, 49, 2814-2820.
https://doi.org/10.1021/acs.macromol.6b00270
[36]  Li, Z., Song, N. and Yang, Y.-W. (2019) Stimuli-Responsive Drug-Delivery Systems Based on Supramolecular Nanovalves. Matter, 1, 345-368.
https://doi.org/10.1016/j.matt.2019.05.019
[37]  Zhu, H., Shangguan, L., Shi, B., Yu, G. and Huang, F. (2018) Recent Progress in Macrocyclic Amphiphiles and Macrocyclic Host-Based Supra-Amphiphiles. Materials Chemistry Frontiers, 2, 2152-2174.
https://doi.org/10.1039/C8QM00314A
[38]  Bojtár, M., Kozma, J., Szakács, Z., Hessz, D., Kubinyi, M. and Bitter, I. (2017) Pillararene-Based Fluorescent Indicator Displacement Assay for the Selective Recognition of ATP. Sensors and Actuators B: Chemical, 248, 305-310.
https://doi.org/10.1016/j.snb.2017.03.163
[39]  Zhou, Q., Zhang, B., Han, D., Chen, R., Qiu, F.,Wu, J. and Jiang, H. (2015) Photo-Responsive Reversible Assembly of Gold Nanoparticles Coated with Pillar[5]arenes. Chemical Communications, 51, 3124-3126.
https://doi.org/10.1039/C4CC09778E
[40]  Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. and Kim, K. (2000) New Cucurbituril Homologues:? Syntheses, Isolation, Characterization, and X-Ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8). Journal of the American Chemical Society, 122, 540-541.
https://doi.org/10.1021/ja993376p
[41]  Biedermann, F., Elmalem, E., Ghosh, I., Nau, W.M. and Scherman, O.A. (2012) Strongly Fluorescent, Switchable Perylene Bis(diimide) Host-Guest Complexes with Cucurbit[8]uril in Water. Angewandte Chemie, 124, 7859-7863.
https://doi.org/10.1002/ange.201202385
[42]  Lagona, J., Wagner, B.D. and Isaacs, L. (2006) Molecular-Recognition Properties of a Water-Soluble Cucurbit[6]uril Analogue. The Journal of Organic Chemistry, 71, 1181-1190.
https://doi.org/10.1021/jo052294i
[43]  Jiao, D., Geng, J., Loh, X.J., Das, D., Lee, T.-C. and Scherman, O.A. (2012) Supramolecular Peptide Amphiphile Vesicles through Host-Guest Complexation. Angewandte Chemie International Edition, 51, 9633-9637.
https://doi.org/10.1002/anie.201202947
[44]  Cheng, X.-J., Liang, L.-L., Chen, K., Ji, N.-N., Xiao, X., Zhang, J.-X., Zhang, Y.-Q., Xue, S.-F., Zhu, Q.-J., Ni, X.-L. and Tao, Z. (2013) Twisted Cucurbit[14]uril. Angewandte Chemie International Edition, 52, 7252 -7255.
https://doi.org/10.1002/anie.201210267
[45]  Liu, S., Zavalij, P.Y. and Isaacs, L. (2005) Cucurbit[10]uril. Journal of the American Chemical Society, 127, 16798- 16799.
https://doi.org/10.1021/ja056287n

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413