全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2023 

用于空间分辨转录组学数据分析的统计方法
Statistical Methods for Spatially Re-solved Transcriptomic Data Analysis

DOI: 10.12677/BP.2023.131008, PP. 57-63

Keywords: 基因表达模式,空间分辨转录组,统计分析
Gene Expression Patterns
, Spatially Resolved Transcriptome, Statistical Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,空间转录组学的发展使得对细胞转录组及其空间位置进行多重分析得以实现。伴随着实验技术能力与效率的日益提升,发展分析方法的要求也逐渐显现。生成空间分辨转录组(SRT, Spatially Resolved Transcriptome)数据的技术正在迅速改进,并应用于研究各种生物组织。研究空间定位基因表达如何为不同组织发育提供新的见解是至关重要的。我们回顾了用于分析不同SRT数据集的可用包,重点是识别空间可变基因(SVGs, Spatially Variable Genes)。另外,在测序方案不断开发的过程中,有必要对现有分析方法中的基本假设进行重新评价与调整,以便使用越来越复杂的数据。为启发和协助今后模型开发工作,这里将对空间转录组学统计学习方法研究新进展进行综述,归纳出有用资源并介绍今后的挑战与机遇。
In recent years, the development of spatial tran-scriptomics has enabled multiple analyses of cell transcriptome and its spatial location. With the increasing ability and efficiency of experimental technology, the requirement of developing analyt-ical methods has gradually emerged. Techniques for generating Spatially Resolved Transcriptome (SRT) data are rapidly improving and being applied to study a variety of biological tissues. It is crit-ical to study how spatially localized gene expression provides new insights into different tissue de-velopment. This paper reviews the packages available for analysis of different SRT data sets, with emphasis on the identification of Spatially Variable Genes (SVGs, Spatially Variable Genes). In addi-tion, as sequencing protocols continue to be developed, it is necessary to reevaluate and adjust the basic assumptions in existing analytical methods in order to use increasingly complex data. In order to inspire and assist future model development, this paper reviews the recent progress of statistical learning methods in spatial transcriptomics, summarizes useful resources, and introduces future challenges and opportunities.

References

[1]  St?hl, P.L., Salmén, F., Vickovic, S., et al. (2016) Visualization and Analysis of Gene Expression in Tissue Sections by Spatial Transcriptomics. Science, 353, 78-82.
https://doi.org/10.1126/science.aaf2403
[2]  Kharchenko, P.V. (2021) The Triumphs and Limitations of Computational Methods for scRNA-seq. Nature Methods, 18, 723-732.
https://doi.org/10.1038/s41592-021-01171-x
[3]  Lein, E., Borm, L.E. and Linnarsson, S. (2017) The Promise of Spatial Transcriptomics for Neuroscience in the Era of Molecular Cell Typing. Science, 358, 64-69.
https://doi.org/10.1126/science.aan6827
[4]  Dries, R., Chen, J., Del Rossi, N., et al. (2021) Advances in Spatial Transcriptomic Data Analysis. Genome Research, 31, 1706-1718.
https://doi.org/10.1101/gr.275224.121
[5]  Kharchenko, P.V., Silberstein, L. and Scadden, D.T. (2014) Bayesian Approach to Single-Cell Differential Expression Analysis. Nature Methods, 11, 740-742.
https://doi.org/10.1038/nmeth.2967
[6]  Vu, T.N., Wills, Q.F., Kalari, K.R., et al. (2016) Beta-Poisson Model for Single-Cell RNA-seq Data Analyses. Bioinformatics, 32, 2128-2135.
https://doi.org/10.1093/bioinformatics/btw202
[7]  Weiss, K., Khoshgoftaar, T.M. and Wang, D. (2016) A Survey of Transfer Learning. Journal of Big Data, 3, 1-40.
https://doi.org/10.1186/s40537-016-0043-6
[8]  Zeng, Z., Li, Y.W., Li, Y.M., et al. (2022) Statistical and Machine Learning Methods for Spatially Resolved Transcriptomics Data Analysis. Genome Biology, 23, 1-23.
https://doi.org/10.1186/s13059-022-02653-7
[9]  Edsg?rd, D., Johnsson, P. and Sandberg, R. (2018) Identification of Spatial Expression Trends in Single-Cell Gene Expression Data. Nature Methods, 15, 339-342.
https://doi.org/10.1038/nmeth.4634
[10]  Svensson, V., Teichmann, S.A. and Stegle, O. (2018) SpatialDE: Identifi-cation of Spatially Variable Genes. Nature Methods, 15, 343-346.
https://doi.org/10.1038/nmeth.4636
[11]  Sun, S., Zhu, J. and Zhou, X. (2020) Statistical Analysis of Spatial Expression Patterns for Spatially Resolved Transcriptomic Studies. Nature Methods, 17, 193-200.
https://doi.org/10.1038/s41592-019-0701-7
[12]  Breslow, N.E. and Lin, X.H. (1995) Bias Correction in Generalized Linear Mixed Models with a Single-Component of Dispersion. Biometrika, 82, 81-91.
https://doi.org/10.1093/biomet/82.1.81
[13]  Sun, S.Q., et al. (2019) Heritability Estimation and Differ-ential Analysis of Count Data with Generalized Linear Mixed Models in Genomic Sequencing Studies. Bioinformatics, 35, 487-496.
https://doi.org/10.1093/bioinformatics/bty644
[14]  Liu, Y.W., et al. (2019) ACAT: A Fast and Pow-erful P Value Combination Method for Rare-Variant Analysis in Sequencing Studies. The American Journal of Human Genetics, 104, 410-421.
https://doi.org/10.1016/j.ajhg.2019.01.002
[15]  Zhu, J., Sun, S. and Zhou, X. (2021) SPARK-X: Non-Parametric Modeling Enables Scalable and Robust Detection of Spatial Expression Patterns for Large Spatial Transcriptomic Studies. Genome Biology, 22, 1-25.
https://doi.org/10.1186/s13059-021-02404-0
[16]  BinTayyash, N., Georgaka, S., John, S.T., et al. (2021) Non-Parametric Modelling of Temporal and Spatial Counts Data from RNA-seq Experiments. Bioinformatics, 21, 3788-3795.
https://doi.org/10.1093/bioinformatics/btab486
[17]  Svensson,V. (2020) Droplet scRNA-seq Is Not Zero-Inflated. Nature Biotechnology, 38, 147-144.
https://doi.org/10.1038/s41587-019-0379-5
[18]  Townes, F.W., et al. (2019) Feature Selection and Dimension Reduction for Single-Cell RNA-Seq Based on a Multinomial Model. Genome Biology, 20, 1-16.
https://doi.org/10.1186/s13059-019-1861-6
[19]  Zhao, E., Stone, M.R., Ren, X., et al. (2021) Spatial Tran-scriptomics at Subspot Resolution with BayesSpace. Nature Biotechnology, 11, 1375-1384.
https://doi.org/10.1038/s41587-021-00935-2
[20]  Saviano, A., Henderson, N.C. and Baumert, T.F. (2020) Sin-gle-Cell Genomics and Spatial Transcriptomics: Discovery of Novel Cell States and Cellular Interactions in Liver Physi-ology and Disease Biology. Journal of Hepatology, 73, 1219-1230.
https://doi.org/10.1016/j.jhep.2020.06.004
[21]  Smith, E.A. and Hodges, H.C. (2019) The Spatial and Genomic Hierarchy of Tumor Ecosystems Revealed by Single-Cell Technologies. Trends in Cancer, 5, 411-425.
https://doi.org/10.1016/j.trecan.2019.05.009

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413