全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Long-Term Rainfall Trends in South West Asia—Saudi Arabia

DOI: 10.4236/ajcc.2023.121010, PP. 204-217

Keywords: Rainfall Trend, Long-Term, Saudi Arabia, Mann-Kendell

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, rainfall data from 19 stations in Saudi Arabia (SA) for the period 1985-2019 was utilized to investigate interannual, monthly, and seasonal rainfall variations and trends. The magnitudes of these trends were characterized and tested using Mann-Kendall (MK) rank statistics at different significance levels. During this study period, the mean rainfall in SA showed a slight and significant decreasing trend by about 2 mm/35 years. Investigation of seasonal trends of rainfall revealed that Winter and Spring rainfall decreased significantly by 2.7 mm/35 years and 5.4 mm/35 years respectively. Three months showed very slight significant decreasing trends of rainfall. These were the months of February, March and April. Mann-Kendall analyses were carried out to investigate the annual trends of rainfall during three sub-periods, i.e., 1985-1996, 1997-2008, and 2009-2019. The results revealed that while rainfall increased by 5.3 mm/12 years and 7.8 mm/11 years for the first and the third periods respectively, it decreased by about 11 mm/12 years during the second period. While trends of rainfall in Saudi Arabia are affected by large scale circulations and local factors, the effect of extraterrestrial factors, such as solar activity and its consequent effects on the climate may, additionally, play a potential role in affecting the pattern of rainfall in Saudi Arabia.

References

[1]  Al Senafi, F., & Anis, A. (2015). Shamals and Climate Variability in the Northern Arabian/Persian Gulf from 1973 to 2012. International Journal of Climatology, 35, 4509-4528.
https://doi.org/10.1002/joc.4302
[2]  Almazroui, M. (2020). Rainfall Trends and Extremes in Saudi Arabia in Recent Decades. Atmosphere, 11, 964.
https://doi.org/10.3390/atmos11090964
[3]  Almazroui, M., & Sæed, S. (2020). Contribution of Extreme Daily Precipitation to Total Rainfall over the Arabian Peninsula. Atmospheric Research, 231, Article ID: 104672.
https://doi.org/10.1016/j.atmosres.2019.104672
[4]  Almazroui, M., Balkhair, K. S., Islam, M. N., & Şen, Z. (2017a). Climate Change Impact on Monthly Precipitation Wet and Dry Spells in Arid Regions: Case Study over Wadi Al-Lith Basin. Advances in Meteorology, 2017, Article ID: 5132895.
https://doi.org/10.1155/2017/5132895
[5]  Almazroui, M., Islam, M. N., Balkhair, K. S., Şen, Z., & Masood, A. (2017b). Rainwater Harvesting Possibility under Climate Change: A Basin-Scale Case Study over Western Province of Saudi Arabia. Atmospheric Research, 189, 11-23.
https://doi.org/10.1016/j.atmosres.2017.01.004
[6]  Almazroui, M., Nazrul Islam, M., Athar, H., Jones, P., & Rahman, M. A. (2012). Recent Climate Change in the Arabian Peninsula: Annual Rainfall and Temperature Analysis of Saudi Arabia for 1978-2009. International Journal of Climatology, 32, 953-966.
https://doi.org/10.1002/joc.3446
[7]  Alyamani, M. S. (2001). Isotopic Composition of Rainfall and Ground-Water Recharge in the Western Province of Saudi Arabia. Journal of Arid Environments, 49, 751-760.
https://doi.org/10.1006/jare.2001.0815
[8]  Augustine, D. J., & McNaughton, S. J. (2006). Interactive Effects of Ungulate Herbivores, Soil Fertility, and Variable Rainfall on Ecosystem Processes in a Semi-Arid Savanna. Ecosystems, 9, 1242-1256.
https://doi.org/10.1007/s10021-005-0020-y
[9]  Bari, S. H., Rahman, M. T. U., Hoque, M. A., & Hussain, M. M. (2016). Analysis of Seasonal and Annual Rainfall Trends in the Northern Region of Bangladesh. Atmospheric Research, 176, 148-158.
https://doi.org/10.1016/j.atmosres.2016.02.008
[10]  Bell, J. E., Brown, C. L., Conlon, K., Herring, S., Kunkel, K. E., Lawrimore, J., Luber, G., Schreck, C., Smith, A., & Uejio, C. (2018). Changes in Extreme Events and the Potential Impacts on Human Health. Journal of the Air & Waste Management Association, 68, 265-287.
https://doi.org/10.1080/10962247.2017.1401017
[11]  Bhattacharyya, S., & Narasimha, R. (2005). Possible Association between Indian Monsoon Rainfall and Solar Activity. Geophysical Research Letters, 32.
https://doi.org/10.1029/2004GL021044
[12]  Bowen, E. (1956). The Relation between Rainfall and Meteor Showers. Journal of Meteorology, 13, 142-151.
https://doi.org/10.1175/1520-0469(1956)013<0142:TRBRAM>2.0.CO;2
[13]  Bucha, V. (1991). Solar and Geomagnetic Variability and Changes of Weather and Climate. Journal of Atmospheric and Terrestrial Physics, 53, 1161-1172.
https://doi.org/10.1016/0021-9169(91)90067-H
[14]  Carslaw, K., Harrison, R., & Kirkby, J. (2002). Cosmic Rays, Clouds, and Climate. Science, 298, 1732-1737.
https://doi.org/10.1126/science.1076964
[15]  De Vries, A., Feldstein, S. B., Riemer, M., Tyrlis, E., Sprenger, M., Baumgart, M., Fnais, M., & Lelieveld, J. (2016). Dynamics of Tropical-Extratropical Interactions and Extreme Precipitation Events in Saudi Arabia in Autumn, Winter and Spring. Quarterly Journal of the Royal Meteorological Society, 142, 1862-1880.
https://doi.org/10.1002/qj.2781
[16]  Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate Extremes: Observations, Modeling, and Impacts. Science, 289, 2068-2074.
https://doi.org/10.1126/science.289.5487.2068
[17]  Edgell, H. S. (2006). Arabian Deserts: Nature, Origin and Evolution. Springer Science & Business Media.
https://doi.org/10.1007/1-4020-3970-0
[18]  Emori, S., & Brown, S. (2005). Dynamic and Thermodynamic Changes in Mean and Extreme Precipitation under Changed Climate. Geophysical Research Letters, 32, L17706.
https://doi.org/10.1029/2005GL023272
[19]  Essenwanger, O. M. (1986). Elements of Statistical Analysis.
[20]  Farnsworth, A., White, E., Williams, C. J., Black, E., & Kniveton, D. R. (2011). Understanding the Large Scale Driving Mechanisms of Rainfall Variability over Central Africa. In D. R. Kniveton, & C. J. R. Williams (Eds.), African Climate and Climate Change (pp. 101-122). Springer.
https://doi.org/10.1007/978-90-481-3842-5_5
[21]  Foster, G., & Rahmstorf, S. (2011). Global Temperature Evolution 1979-2010. Environmental Research Letters, 6, Article ID: 044022.
https://doi.org/10.1088/1748-9326/6/4/044022
[22]  Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Rowland, J., Romero, B., Husak, G., Michælsen, J., & Verdin, A. (2014). A Quasi-Global Precipitation Time Series for Drought Monitoring (4 p.). U.S. Geological Survey Data Series 832.
https://doi.org/10.3133/ds832
[23]  Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing Trend of Extreme Rain Events over India in a Warming Environment. Science, 314, 1442-1444.
https://doi.org/10.1126/science.1132027
[24]  Hasanean, H., & Almazroui, M. (2015). Rainfall: Features and Variations over Saudi Arabia, a Review. Climate, 3, 578-626.
https://doi.org/10.3390/cli3030578
[25]  Hunt, B. G. (2000). Natural Climatic Variability and Sahelian Rainfall Trends. Global and Planetary Change, 24, 107-131.
https://doi.org/10.1016/S0921-8181(99)00064-8
[26]  Kirov, B., & Georgieva, K. (2002). Long-Term Variations and Interrelations of ENSO, NAO and Solar Activity. Physics and Chemistry of the Earth, Parts A/B/C, 27, 441-448.
https://doi.org/10.1016/S1474-7065(02)00024-4
[27]  Köppen, W., & Geiger, R. (1930). Handbuch der klimatologie. Gebrüder Borntræger Berlin.
[28]  Laurenz, L., Lüdecke, H.-J., & Lüning, S. (2019). Influence of Solar Activity Changes on European Rainfall. Journal of Atmospheric and Solar-Terrestrial Physics, 185, 29-42.
https://doi.org/10.1016/j.jastp.2019.01.012
[29]  Maghrabi, A. (2019). Multi-Decadal Variations and Periodicities of the Precipitable Water Vapour (PWV) and Their Possible Association with Solar Activity: Arabian Peninsula. Journal of Atmospheric and Solar-Terrestrial Physics, 185, 22-28.
https://doi.org/10.1016/j.jastp.2019.01.011
[30]  Maghrabi, A., & Al Dajani, H. (2013). Estimation of Precipitable Water Vapour Using Vapour Pressure and Air Temperature in an Arid Region in Central Saudi Arabia. Journal of the Association of Arab Universities for Basic and Applied Sciences, 14, 1-8.
https://doi.org/10.1016/j.jaubas.2012.11.001
[31]  Maghrabi, A., & Kudela, K. (2019). Relationship between Time Series Cosmic Ray Data and Aerosol Optical Properties: 1999-2015. Journal Solar Terrestrial Physics, 190, 36-44.
https://doi.org/10.1016/j.jastp.2019.04.014
[32]  Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L., Samset, B. H., Sillmann, J., Schaller, N., Fischer, E., Schulz, M. et al. (2019). Frequency of Extreme Rainfall Increases Extensively with Event Rareness under Global Warming. Scientific Reports, 9, Article No. 16063.
https://doi.org/10.1038/s41598-019-52277-4
[33]  Olayide, O. E., Tetteh, I. K., & Popoola, L. (2016). Differential Impacts of Rainfall and Irrigation on Agricultural Production in Nigeria: Any Lessons for Climate-Smart Agriculture? Agricultural Water Management, 178, 30-36.
https://doi.org/10.1016/j.agwat.2016.08.034
[34]  Subyani, A. M. (2004). Geostatistical Study of Annual and Seasonal Mean Rainfall Patterns in Southwest Saudi Arabia/Distribution géostatistique de la pluie moyenne annuelle et saisonnière dans le Sud-Ouest de l’Arabie Saoudite. Hydrological Sciences Journal, 49, 817.
https://doi.org/10.1623/hysj.49.5.803.55137
[35]  Sung, J. H., Chung, E. S., Lee, B., & Kim, Y. (2015). Meteorological Hazard Assessment Based on Trends and Abrupt Changes in Rainfall Characteristics on the Korean Peninsula. Theoretical and Applied Climatology, 127, 305-326.
https://doi.org/10.1007/s00704-015-1581-0
[36]  Svensmark, H., & Friis-Christensen, E. (1997). Variation of Cosmic Ray Flux and Global Cloud Coverage—A Missing Link in Solar-Climate Relationships. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 1225-1232.
https://doi.org/10.1016/S1364-6826(97)00001-1
[37]  Svensmark, H., Bondo, T., & Svensmark, J. (2009). Cosmic Ray Decreases Affect Atmospheric Aerosols and Clouds. Geophysical Research Letters, 36.
https://doi.org/10.1029/2009GL038429
[38]  Tan, X., Gan, T. Y., Chen, S., Horton, D. E., Chen, X., Liu, B., & Lin, K. (2019). Trends in Persistent Seasonal-Scale Atmospheric Circulation Patterns Responsible for Seasonal Precipitation Totals and Occurrences of Precipitation Extremes over Canada. Journal of Climate, 32, 7105-7126.
https://doi.org/10.1175/JCLI-D-18-0408.1
[39]  Wang, X.-J., Zhang, J.-Y., Ali, M., Shahid, S., He, R.-M., Xia, X.-H., & Jiang, Z. (2016). Impact of Climate Change on Regional Irrigation Water Demand in Baojixia Irrigation District of China. Mitigation and Adaptation Strategies for Global Change, 21, 233-247.
https://doi.org/10.1007/s11027-014-9594-z
[40]  Yue, S., & Pilon, P. (2004). A Comparison of the Power of the T Test, Mann-Kendall and Bootstrap Tests for Trend Detection/Une comparaison de la puissance des tests t de Student, de Mann-Kendall et du bootstrap pour la détection de tendance. Hydrological Sciences Journal, 49, 21-37.
https://doi.org/10.1623/hysj.49.1.21.53996
[41]  Yue, S., & Wang, C. (2004). The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resources Management, 18, 201-218.
https://doi.org/10.1023/B:WARM.0000043140.61082.60
[42]  Zhang, X., Zwiers, F. W., Hegerl, G. C., Lambert, F. H., Gillett, N. P., Solomon, S., Stott, P. A., & Nozawa, T. (2007). Detection of Human Influence on Twentieth-Century Precipitation Trends. Nature, 448, 461-465.
https://doi.org/10.1038/nature06025

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413