全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

State of Knowledge on Starch as an Alternative Solution to Petrochemical Resources—A Review

DOI: 10.4236/jmmce.2023.112005, PP. 49-62

Keywords: Plastics, Starch, Composite Films, Thermoplastic Starch, Biodegradable

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of plastics from petrochemical resources poses environmental impacts, and one of the alternative solutions is the use of starch. The objective of this present work has been to present the literature on starch, and to highlight the debate in the development of composite films. The approach adopted was to present the state of the art on starch and thermoplastic starch matrix composites. The work shows that starch is available worldwide and can be used in the manufacture of biodegradable plastics; the debate remains on the reinforcement of thermoplastic starch to improve its physical and mechanical properties poor; then researchers must diversify the reinforcements to see the impact on the properties of thermoplastic starch.

References

[1]  Zakaria, N.H., Ngali, M.Z., Selamat, M.Z., Munir, F.A. and Aman, M.A. (2020) Characteristic of Thermoplastics Corn Starch Composite Reinforced Short Pineapple Leaf Fibre by Using Laminates Method. Journal of Mechanical Engineering and Sciences, 14, 7058-7070.
https://doi.org/10.15282/jmes.14.3.2020.08.0553
[2]  Gourmelon, G. (2015) Global Plastic Production Rises, Recycling Lags. Vital Signs, 22, 91-95.
[3]  Sanyang, M., Sapuan, S., Jawaid, M., Ishak, M. and Sahari, J. (2015) Effect of Plasticizer Type and Concentration on Dynamic Mechanical Properties of Sugar Palm Starch-Based Films. International Journal of Polymer Analysis and Characterization, 20, 627-636.
https://doi.org/10.1080/1023666X.2015.1054107
[4]  Drzal, L.T., Mohanty, A. and Misra, M. (2001) Bio-Composite Materials as Alternatives to Petroleum-Based Composites for Automotive Applications. Magnesium, 40, 1-3.
[5]  Jumaidin, R., Salit, M.S., Firdaus, M.S., Ab Ghani, A.F., Yaakob, M.Y. and Zakaria, N.H. (2018) Effect of Agar on Dynamic Mechanical Properties of Thermoplastic Sugar Palm Starch: Thermal Behavior. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 47, 89-96.
[6]  Belibi, P.C. (2013) Elaboration et caractérisation des biofilms à base d’amidon de manioc renforcés par des charges minérales bi et tri-dimensionnelles. PhD Thesis, Université de Haute Alsace, Mulhouse.
[7]  Mbey, J.A. (2013) Films composites amidon de manioc-kaolinite: Influence de la dispersion de l’argile et des interactions argile-amidon sur les propriétés des films. PhD Thesis, Université de Lorraine, Nancy.
[8]  Hazrol, M., Sapuan, S., Zainudin, E., Wahab, N. and Ilyas, R. (2022) Effect of Kenaf Fibre as Reinforcing Fillers in Corn Starch-Based Biocomposite Film. Polymers, 14, Article 1590.
https://doi.org/10.3390/polym14081590
[9]  Jumaidin, R., Diah, N.A., Ilyas, R., Alamjuri, R.H. and Yusof, F.A.M. (2021) Processing and Characterisation of Banana Leaf Fibre Reinforced Thermoplastic Cassava Starch Composites. Polymers, 13, Article 1420.
https://doi.org/10.3390/polym13091420
[10]  de Carvalho, G.R., Marques, G.S., de Matos Jorge, L.M. and Jorge, R.M.M. (2021) Effect of the Addition of Cassava Fibers on the Properties of Cassava Starch Composite Films. Brazilian Journal of Chemical Engineering, 38, 341-349.
https://doi.org/10.1007/s43153-021-00093-7
[11]  Tantely, M.J. (2019) Contribution à la réduction de la pollution de l’environnement émise par les sacs plastiques: élaboration et caractérisation des films bioplastiques à base d’amidon de manioc amer renforces par le chitosane. Master II en Chimie, Faculté des Sciences, Université d’Antananarivo, Antananarivo.
[12]  Boursier, B. (2005) Amidons natifs et amidons modifiés alimentaires. Ed. Techniques Ingénieur.
https://doi.org/10.51257/a-v1-f4690
[13]  Hazrol, M., Sapuan, S., Zainudin, E., Zuhri, M. and Abdul Wahab, N. (2021) Corn Starch (Zea mays) Biopolymer Plastic Reaction in Combination with Sorbitol and Glycerol. Polymers, 13, Article 242.
https://doi.org/10.3390/polym13020242
[14]  Fath, M.T.A., Nasution, H., Harahap, H. and Ayu, G.E. (2019) Biocomposite of Pectin and Starch Filled with Nanocrystalline Cellulose (NCC): The Effect of Filler Loading and Glycerol Addition. AIP Conference Proceedings, 2175, Article ID: 020012.
https://doi.org/10.1063/1.5134576
[15]  Lindriati, T., Rusdianto, A.S., Pakartiko, B. and Adha, F.A. (2021) Physical Mechanical Properties of Biodegradable Plastics from Cassava Starch with Variation of Bagasse and Glycerol. Journal La Lifesci, 2, 9-19.
https://doi.org/10.37899/journallalifesci.v2i1.287
[16]  Takache, H., Legrand, M., Aluoi, M., De Lamballerie-Anton, M.M., Fayolle, M.F. and Loubière, M.K. (2006) Effet du traitement thermique et du cisaillement dans un échangeur tubulaire sur les propriétés rhéologiques d’un système à base d’amidon. Master, Université de Nantes, Nantes.
[17]  Vernier, P., N’zué, B. and Zakhia-Rozis, N. (2018) Le manioc, entre culture alimentaire et filière agro-industrielle. éditions Quae.
https://doi.org/10.35690/978-2-7592-2708-2
[18]  Guilbot, A. and Mercier, C. (1985) Starch. In: Aspinall, O., Ed., The Polysaccharides, Academic Press, New York.
[19]  Tester, R.F., Karkalas, J. and Qi, X. (2004) Starch—Composition, Fine Structure and Architecture. Journal of Cereal Science, 39, 151-165.
https://doi.org/10.1016/j.jcs.2003.12.001
[20]  Appelqvist, I.A. and Debet, M.R. (1997) Starch-Biopolymer Interactions—A Review. Food Reviews International, 13, 163-224.
https://doi.org/10.1080/87559129709541105
[21]  Liu, S., Yu, T., Yin, S., Bui, T.Q., et al. (2019) Size and Surface Effects on Mechanical Behavior of Thin Nanoplates Incorporating Microstructures Using Isogeometric Analysis. Computers & Structures, 212, 173-187.
https://doi.org/10.1016/j.compstruc.2018.10.009
[22]  Liu, H., Xie, F., Yu, L., Chen, L. and Li, L. (2009) Thermal Processing of Starch-Based Polymers. Progress in Polymer Science, 34, 1348-1368.
https://doi.org/10.1016/j.progpolymsci.2009.07.001
[23]  Rosa, D., Carvalho, C., Gaboardi, F., Rezende, M., Tavares, M. and Petro, M. (2008) Evaluation of Enzymatic Degradation Based on the Quantification of Glucose in Thermoplastic Starch and Its Characterization by Mechanical and Morphological Properties and NMR Measurements. Polymer Testing, 27, 827-834.
https://doi.org/10.1016/j.polymertesting.2008.06.008
[24]  Ragoubi, M. (2010) Contribution à l’amélioration de la compatiblilité interfaciale fibres naturelles/matrice thermoplastique via un traitement sous décharge couronne. PhD Thesis, Université Nancy 1, Nancy.
[25]  Ibrahim, H., Farag, M., Megahed, H. and Mehanny, S. (2014) Characteristics of Starch-Based Biodegradable Composites Reinforced with Date Palm and Flax Fibers. Carbohydrate Polymers, 101, 11-19.
https://doi.org/10.1016/j.carbpol.2013.08.051
[26]  Edhirej, A., Sapuan, S., Jawaid, M. and Zahari, N.I. (2017) Preparation and Characterization of Cassava Bagasse Reinforced Thermoplastic Cassava Starch. Fibers and Polymers, 18, 162-171.
https://doi.org/10.1007/s12221-017-6251-7
[27]  Stanojlovic-Davidovic, A. (2006) Matériaux biodégradables à base d’amidon expansé renforcé de fibres naturelles—Application à l’emballage alimentaire. PhD Thesis, Université de Toulon, Toulon.
[28]  Gironès, J., López, J., Mutjé, P., de Carvalho, A.J.F., Curvelo, A.A.S. and Vilaseca, F. (2012) Natural Fiber-Reinforced Thermoplastic Starch Composites Obtained by Melt Processing. Composites Science and Technology, 72, 858-863.
https://doi.org/10.1016/j.compscitech.2012.02.019
[29]  Mo, X.Z., Zhong, Y.X., Liang, C.Q. and Yu, S.J. (2010) Studies on the Properties of Banana Fibers-Reinforced Thermoplastic Cassava Starch Composites: Preliminary Results. Advanced Materials Research, 87, 439-444.
https://doi.org/10.4028/www.scientific.net/AMR.87-88.439
[30]  Bendaoud, A. (2014) Fluide supercritique et liquide ionique comme plastifiants de polymères biosourcés: Application à l’amidon et à l’acétate de cellulose. Université Jean Monnet, Saint-Etienne.
[31]  Noah, P.M.A., Betene, E.F., Obame, S.V., Allasra, B., Bindjeme, M.C. and Atangana, A. (2020) Elaboration and Characterization of a Hybrid Composite Material with Two Particles of the Same Size: Coco Shells and Palm Shells. Open Journal of Composite Materials, 10, 77-91.
https://doi.org/10.4236/ojcm.2020.104006
[32]  Armand, Z.T.S., et al. (2022) Elaboration and Characterization of a Plaster Reinforced with Fibers from the Stem of Cola lepidota for Industrial Applications. World Journal of Engineering Research and Technology, 10, 824-842.
https://doi.org/10.4236/wjet.2022.104054
[33]  Njom, A.E., et al. (2022) Hybrid Composite Based on Natural Rubber Reinforced with Short Fibers of the Triumfetta cordifolia/Saccharum officinarum L.: Performance Evaluation. Journal of Minerals and Materials Characterization and Engineering, 10, 385-399.
https://doi.org/10.4236/jmmce.2022.105027
[34]  Ndengue, M.J., Ayissi, M.Z., Noah, P.M.A., Ebanda, F.B., Ateba, A., et al. (2021) Implementation and Evaluation of Certain Properties of a Polymer Matrix Composite Material Reinforced by Fibrous Residues of Saccharum officinarum in View of an Applicability Orientation. Journal of Minerals and Materials Characterization and Engineering, 9, 206-225.
https://doi.org/10.4236/jmmce.2021.92015
[35]  Noah, P.M.A., Ayina Ohandja, L.-M., Eba Medjo, R., Chabira, S., Betene Ebanda, F. and Anyouzoa Ondoua, P. (2016) Study of Thermal Properties of Mixed (PP/EPR)/ABS with Five Model Compatibilizers. Journal of Engineering, 2016, Article ID: 8539694.
https://doi.org/10.1155/2016/8539694
[36]  Libog, L., et al. (2021) Physico-Chemical and Thermal Characterization of the Banana Pseudo-Stem Fibers (BF). European Journal of Experimental Biology, 9, 33-52.
[37]  Betene, A., et al. (2022) Influence of Sampling Area and Extraction Method on the Thermal, Physical and Mechanical Properties of Cameroonian Ananas comosus Leaf Fibers. Heliyon, 8, e10127.
https://doi.org/10.1016/j.heliyon.2022.e10127
[38]  Nkapleweh, A.D., Tendo, J.F., Ebanda, F.B., Noah, P.M.A., Mewoli, A.E. and Stanislas, T.T. (2022) Physico-Chemical and Mechanical Characterization of Triumfetta pentandra Bast Fiber from the Equatorial Region of Cameroon as a Potential Reinforcement of Polymer Composites. Journal of Natural Fibers, 19, 13106-13119.
https://doi.org/10.1080/15440478.2022.2085228
[39]  Obame, S.V., Betené, A.D.O., Naoh, P.M., Betené, F.E. and Atangana, A. (2022) Characterization of the Neuropeltis acuminatas Liana Fiber Treated as Composite Reinforcement. Results in Materials, 16, Article ID: 100327.
https://doi.org/10.1016/j.rinma.2022.100327
[40]  Mewoli, A.E., et al. (2020) Physical-Chemical and Mechanical Characterization of the Bast Fibers of Triumfetta cordifolia A. Rich. from the Equatorial Region of Cameroon. Journal of Minerals and Materials Characterization and Engineering, 8, 163-176.
https://doi.org/10.4236/jmmce.2020.84011
[41]  Ndoumou, R.L., Soulat, D., Labanieh, A.R., Ferreira, M., Meva’a, L. and Atangana Ateba, J. (2022) Characterization of Tensile Properties of Cola lepidota Fibers. Fibers, 10, Article 6.
https://doi.org/10.3390/fib10010006
[42]  Legrand, N.B.R., Pierre, O., Fabien, B.E., Marcel, N.P., Jean, A.A., et al. (2020) Physico-Chemical and Thermal Characterization of a Lignocellulosic Fiber, Extracted from the Bast of Cola lepidota Stem. Journal of Minerals and Materials Characterization and Engineering, 8, 377-392.
https://doi.org/10.4236/jmmce.2020.85024
[43]  Betene Ebanda, F. (2012) Etude des propriétés mécaniques et thermiques du platre renforcé de fibres végétales tropicales. PhD Thesis, Blaise Pascal-Clermont-Ferrand II and University of Douala, Clermont.
[44]  Matsui, K.N., Larotonda, F., Paes, S., Luiz, D., Pires, A. and Laurindo, J. (2004) Cassava Bagasse-Kraft Paper Composites: Analysis of Influence of Impregnation with Starch Acetate on Tensile Strength and Water Absorption Properties. Carbohydrate Polymers, 55, 237-243.
https://doi.org/10.1016/j.carbpol.2003.07.007
[45]  Lu, Y., Weng, L. and Cao, X. (2006) Morphological, Thermal and Mechanical Properties of Ramie Crystallites—Reinforced Plasticized Starch Biocomposites. Carbohydrate Polymers, 63, 198-204.
https://doi.org/10.1016/j.carbpol.2005.08.027
[46]  ISO (2018) 527-3 Standard: Plastics—Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets. ISO, Geneva.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413