全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phylogenetic Relationship and Molecular Divergence Dating Using SRY Gene Polymorphism about Four Ladoum Sheep Lineages in Senegal

DOI: 10.4236/ojas.2023.132013, PP. 179-198

Keywords: Genetic Diversity, Phylogenetic Relationship, Molecular Dating, SRY Gene, Sheeps, Ladoum, Senegal

Full-Text   Cite this paper   Add to My Lib

Abstract:

Animal genetic resources are playing a vital role in livestock production and are essential to food security. The present study aims to contribute to a better understanding genetic local sheep breeds and to elucidate the phylogenetic relationships through the evolution of the SRY gene in four different lineages of Ladoum sheep raised in Senegal. After a brief analysis of genetic diversity, the phylogenetic relationships and molecular dating were inferred through haplotype networks and four phylogenetic reconstruction methods. The different haplotype networks are constructed with NETWORK ver. 5.0.0.0 using the Median-Joining method. Phylogenetic trees were reconstructed using neighbor-joining, maximum parsimony, maximum likelihood and Bayesian inference. The robustness of the nodes in phylogenetic trees of the three first methods was assessed by 1000 bootstraps. For Bayesian inference, the posterior probability distribution of the trees was estimated by 4 MCMC chains. 5,000,000 generations were performed for each of the chains by sampling the different parameters every 1000 generations. Results show a low polymorphism. Haplotypic diversity is much higher than the average nucleotide divergence between all pairs of haplotypes. The majority and central haplotype indicates a close relationship between “Batling” and “Tyson” individuals. “Birahim” lineage is very distinct from the rest. Phylogenetic trees confirm two genetically separate clades between “Birahim” and the other lineages. The period of divergence between “Birahim” lineage versus the common ancestor of the other three lineages was 2504 years ago. The polyphyly revealed in “Birahim” lindicates that this lineage does not contain the common ancestor of all individuals who compose it. It could therefore be derived from two or more sheep breeds with a common ancestor, Ovis aries. The monophyletic clade appears to be a group including a common ancestor and all of its genetic descendants. This group, bringing together the other three lineages, is in the process of being structured into sub-lineages. This study is the first to show that there are only two genetic lines within ladoum

References

[1]  Navès, M.N., Alexandre, G.G., Mahieu, M., Gourdine, J.L. and Mandonnet, N. (2011) Les races animales locales: Bases du développement innovant et durable de l’élevage aux Antilles. Carrefours de l’innovation agronomique, 16, 220-221.
[2]  Gueye, C. (2020) Caractérisation génétique des moutons de race Ladoum en fonction des locations au Sénégal, Mémoire de Master en Biologie animale, Spécialité Génétique des populations, UCAD, Dakar, 30 p.
[3]  Paul, M.C.B. (2005) Sénégal: Un système de santé animale en voie de privatisation. Thèse de Médecine vétérinaire: Ecole Nationale Vétérinaire d’Alfort, à la Faculté de Médecine de Créteil, 145 p.
[4]  Ousseini, H. (2011) Analyse socio-économique des élevages du mouton Ladoum dans la commune de Thiès/Sénégal, Mémoire de Master en Productions Animales et Développement Durable, EISMV, Dakar, 35 p.
[5]  Diack, F., Traore, E.H., Thior, E.H.Y., Gueye, C., Sembène, M. and Seck, M. (2021) Etude de quelques caractéristiques morphobiométriques de la race Ladoum du Sénégal. International Journal of Advanced Research, 9, 315-323.
[6]  Sall Sada, M. (2007) Caractérisation morpho-biométrique et système d’élevage du Mouton Ladoum. Mémoire d’Ingénieur des travaux d’élevage (ENCR), Université de Thiès, Thiès, 37 p.
[7]  Kane, M. (1995) Les races d’animaux élevés en Mauritanie. Bulletin d’information sur les ressources génétiques animales (FAO), 15 p.
[8]  Thior, Y.E.H. (2013) Analyse des stratégies endogènes d’alimentation en élevage ovin Ladoum dans la région de Thiès et propositions d’amélioration. Thèse de doctorat en médecine vétérinaire; UCAD (EISMV), Dakar, 98 p.
[9]  Sadio, M.C. (2010) Caractérisation génétique des races ovines sahéliennes: Etude du Ladoum et du Touabire. Mémoire de Master en Biologie animale, Spécialité Génétique des populations, UCAD, Dakar, 30 p.
[10]  Hillis, D.M. (1997) Biology Recapitulates Phylogeny. Science, 276, 218-219.
https://doi.org/10.1126/science.276.5310.218
[11]  Katsura, Y., Kondo, H.X., Ryan, J., Harley, V. and Satta, Y. (2018) The Evolutionary Process of Mammalian Sex Determination Genes Focusing on Marsupial SRYs. BMC Evolutionary Biology, 18, Article No. 3.
https://doi.org/10.1186/s12862-018-1119-z
[12]  Sembène, P.M., Mbaye, F. and Sembène, P.M. (2023) Genetic Diversity and Demographic Evolution in Four Lineages of Ladoum Sheep in Senegal Using Polymorphisme of the SRY Gene. International Journal of Genetics and Genomics, 11, 6-17.
[13]  Hall, T.A. (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor & Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
[14]  Thompson, J., Higgins, D. and Gibson, T. (1997) CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties & Weight Matrix Choice. Nucleic Acids Research, 22, 4673-4690.
https://doi.org/10.1093/nar/22.22.4673
[15]  Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology & Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[16]  Nei, M. and Tajima, F. (1981) Polymorphisme de l’ADN détectable par les endonucléases de restriction. Génétique, 97, 145-163.
https://doi.org/10.1093/genetics/97.1.145
[17]  Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, 34 p.
https://doi.org/10.7312/nei-92038
[18]  Librado, P. and Rozas, J. (2009) DNASP V5: A Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinfromatics, 25, 1451-1452.
https://doi.org/10.1093/bioinformatics/btp187
[19]  Bandelt, H.J., Forster, P. and Röhl, A. (1999) Median-Joining Networks for Inferring Intraspecific Phylogenies. Molecular Biology and Evolution, 16, 37-48.
https://doi.org/10.1093/oxfordjournals.molbev.a026036
[20]  Kingman J.F.C. (2000) Origins of the Coalescent: 1974-1982. Genetics, 156, 1461-1463.
https://doi.org/10.1093/genetics/156.4.1461
[21]  Saitou, N. and Nei, M. (1987) The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology Evolution, 4, 406-425.
[22]  Felsenstein, J. (1978) Cas dans lesquels la parcimonie ou les méthodes de compatibilité seront positivement trompeuses. Zoologie Systématique, 27, 401-410.
[23]  Cavalli-Sforza, L.L. and Edwards, A.W.F. (1967) Phylogenetic Analysis: Models and Estimation Procedures. Evolution, 32, 550-570.
https://doi.org/10.2307/2406616
[24]  Felsenstein, J. (1981) Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. Journal of Molecular Evolution, 17, 368-376.
https://doi.org/10.1007/BF01734359
[25]  Felsenstein, J. (1985) Confidence of Limits on Phylogenies: An Approach Using Bootstrap. Evolution, 39, 783-791.
https://doi.org/10.2307/2408678
[26]  Soltis, P.S. and Soltis, D.E. (2003) Applying the Bootstrap in Phylogeny Reconstruction. Statistical Science, 18, 256-267.
https://doi.org/10.1214/ss/1063994980
[27]  Mahé, F. (2009) Phylogénie, éléments transposables et evolution de la taille des génomes chez les lupins. Université Rennes, Rennes, 253 p.
[28]  Huelsenbeck, J.P. and Ronquist, F. (2001) Mrbayes: Bayesian Inference of Phylogenetic Trees. Bioinformatics, 17, 754-755.
https://doi.org/10.1093/bioinformatics/17.8.754
[29]  Drummond, A.J., Rambaut, A. and Suchard, M.A. (2015) BEAST: Bayesian Evolutionary Analysis by Sampling Trees. V. 1.8.2.
http://beast.bio.ed.ac.uk
[30]  Rodriguez, F., Oliver, J.L., Marin, A. and Medina, J.R. (1990) The General Stochastic Model of Nucleotide Substitution. Journal of Theoretical Biology, 142, 485-501.
https://doi.org/10.1016/S0022-5193(05)80104-3
[31]  Pérez, T., Hammer, S., Albornoz, J. and Domínguez, A. (2011) Y-Chromosome Phylogeny in the Evolutionary Net of Chamois (Genus Rupicapra). BMC Evolutionary Biology, 11, 272.
https://doi.org/10.1186/1471-2148-11-272
[32]  Brunel, S. (2019) Le chromosome Y et le gène SRY. Epidémiologie et Santé, 3 p.
[33]  Drummond, A.J., Ho, S.Y.W., Phillips, M.J. and Rambaut, A. (2006) Relaxed Phylogenetics and Dating with Confidence. PLOS Biology, 4, 88-91.
https://doi.org/10.1371/journal.pbio.0040088
[34]  Douzery, E.J.P., Snell, E.A., Bapteste, E., Delsuc, F. and Philippe, H. (2004) The Timing of Eukaryotic Evolution: Does a Relaxed Molecular Clock Reconcile Proteins and Fossils? Proceedings of the National Academy of Sciences of the United States of America, 101, 15386-15391.
https://doi.org/10.1073/pnas.0403984101
[35]  Sinclair, A.H., Berta, P., Palmer, M.S., et al. (1990) Un gène de la région humaine déterminant le sexe code pour une protéine présentant une homologie avec un motif de liaison à l’ADN conservé. Nature, 346, 240-244.
https://doi.org/10.1038/346240a0
[36]  Meadows, J.R.S., Hanotte, O., Drögemüller, C., et al. (2006) Globally Dispersed Y Chromosomal Haplotypes in Wild and Domestic Sheep. Animal Genetics, 37, 444-453.
https://doi.org/10.1111/j.1365-2052.2006.01496.x
[37]  Niemi, M., Bläuer, A., Iso-Touru, T., Nyström, V., Harjula, J., Taavitsainen, J.P. and Kantanen, J. (2013) ADN mitochondrial et diversité chromosomique Y dans les anciennes populations de moutons domestiques (Ovis aries) en Finlande: Comparaison avec les races ovines contemporaines. évolution de la Sélection Génétique, 45, 1-14.
https://doi.org/10.1186/1297-9686-45-2
[38]  Meadows, J.R.S., Hawken, R.J. and Kijas, J.W. (2004) Nucleotide Diversity on the Ovine Y Chromosome. Animal Genetics, 35, 379-385.
https://doi.org/10.1111/j.1365-2052.2004.01180.x
[39]  Hasanain, M.H., Mahmoud, K.G.M., Ahmed, Y.F., et al. (2022) Enquête sur le polymorphisme du gène du facteur déterminant le sexe (SRY) et l’association des critères de sperme avec la fertilité du champ chez les taureaux Buffalo égyptiens. Journal égyptien de chimie, 65, 1-2.
[40]  Fu, Q., Zhang, M., Qin, W.S., et al. (2007) Cloning the Swamp Buffalo SRY Gene for Embryo Sexing with Multiplex-Nested PCR. Theriogenology, 68, 1211-1218.
https://doi.org/10.1016/j.theriogenology.2007.07.007
[41]  Ndiaye, B. (2019) L’élevage des petits ruminants dans le Ferlo: Pratiques d’élevage, dynamique des troupeaux et caractérisation génétique du mouton Peul-peul du Sénégal. Thèse de doctorat en Biologie animale, Spécialité Génétique des populations, UCAD, Dakar, 123 p.
[42]  MacHugh, D.E., Shriver, M.D., Loftus, R.T., Cunningham, P. and Bradley, D.G. (1997) Microsatellite DNA Variation and the Evolution, Domestication and Phylogeography of Taurine and Zebu Cattle (Bos taurus and Bos indicus). Genetics, 146, 1071-1086.
https://doi.org/10.1093/genetics/146.3.1071
[43]  Jeffrey, S.A., Webb, A. and Schulz, A. (2010) Factors Affecting Goal Difficulty and Performance When Employees Select Their Own Performance Goals: Evidence from the Field. Journal of Management Accounting Research, 22, 209-232.
https://doi.org/10.2308/jmar.2010.22.1.209
[44]  Hamidreza, R. (2011) Phylogénie moléculaire du Genre Ovis (Mouton et Mouflons), Implications pour la Conservation du Genre et pour l’Origine de l’Espèce Domestique. 134 p.
https://theses.hal.science/tel-00625145
[45]  Issam Belaid (2012) Caractérisation morphologique des troupeaux ovins dans la région de Sétif. Mémoire: Magister Université Farhat Abbas-Setif (Algérie); Faculté des Sciences de la Nature et de la Vie, département des Sciences Agronomiques, 199 p.
[46]  Cheng, Z.Y., Duan, T., Sha, J., et al. (2006) Origin, Genetic Diversity, and Population Structure of Chinese Domestic Sheep, Gene, 376, 220-223.
https://doi.org/10.1016/j.gene.2006.03.009

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133