全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study of the Effect of Plastic Aggregates on Drying Shrinkage and Expansion of Concrete

DOI: 10.4236/msa.2023.144015, PP. 255-272

Keywords: Wastes Plastic, Internal Sulfate Attack, Physical Properties, Mechanical Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this work was to propose a possibility of using plastic aggregates from waste to reduce the shrinkage and expansion observed in concrete. The process of obtaining plastic aggregates was presented. Natural aggregates were partially substituted by plastic aggregates in the percentages: 0%, 5%, 10%, 20% and 30%. Drying shrinkage, water absorption and expansion tests were carried out on three families of concrete: control concrete (BT), concrete with addition of BAgP-PEHD high-density polyethylene plastic aggregate and with polyvinyl chloride BAgP-PVC. Given the slow appearance of the internal sulfate attack (ISA), an experimental technique was proposed to accelerate the appearance of this pathology. This technique involves heat treatment which stimulates the heating of the concrete at a young age, followed by a cycle of drying and cooling and ends with total immersion in water. The method of measuring expansions through sample image correlation was also proposed. The results showed an increased skrinkage of BAgP-HDPE compared to BT. On the other hand, a significant decrease in shrinkage was observed in BAgP-PVC samples. Water absorption increased in BAgP-HDPE and BAgP-PVC compared to BT. Greater expansion was observed at the cement paste-plastic aggregate interface than at the cement paste-natural aggregate interface. Given these properties, BAgP-PVC can be recommended for paving surfaces exposed to the hard weather conditions.

References

[1]  Manzoor, J., et al. (2021) Plastic Waste Environmental and Human Health Impacts. In: Manzoor, J., et al., Eds., Plastic Waste Environmental and Human Health Impacts, IGI Global, Hershey, 29-37.
[2]  Gurbir, K. and Sara, P. (2021) Physical Properties and Microstructure of Plastic Aggregate Mortars Made with Acrylonitrile-Butadiene-Styrene (ABS), Polycarbonate (PC), Polyoxymethylene (POM) and ABS/PC Blend Waste. Journal of Building Engineering, 31, Article ID: 101341.
https://doi.org/10.1016/j.jobe.2020.101341
[3]  Niyitanga, E., Sarmad, A.Q., Muhammad, B., Damià, B. and Hafiz, M.N.I. (2021) Plastic Waste and Its Management Strategies for Environmental Sustainability. Case Studies in Chemical and Environmental Engineering, 4, Article ID: 100142.
https://doi.org/10.1016/j.cscee.2021.100142
[4]  del Rey Castillo, E., et al. (2020) Light-Weight Concrete with Artificial Aggregate Manufactured from Plastic Waste. Construction and Building Materials, 265, Article ID: 120199.
https://doi.org/10.1016/j.conbuildmat.2020.120199
[5]  Aubert, J.E., Escadeillas, G. and Leklou, N. (2009) Expansion of Five-Year-Old Mortars Attributable to DEF: Relevance of the Laboratory Studies on DEF. Construction and Building Materials, 23, 3583-3585.
https://doi.org/10.1016/j.conbuildmat.2009.08.015
[6]  Leklou, N., Aubert, J.E. and Escadeillas, G. (2008) Microscopic Observations of Samples Affected by Delayed Ettringite Formation (DEF). Materials and Structures, 42, 1369-1378.
https://doi.org/10.1617/s11527-008-9456-9
[7]  Barbarulo, R. (2002) Comportement des matériaux cimentaires: actions des sulfates et de la température. Ph.D. Thesis, Ecole Normale Supérieure de Cachan, Ile-de-France.
[8]  Brunetaud, X. (2005) étude de l’influence de différents paramètres et de leurs interactions sur la cinétique de l’amplitude de la réaction sulfatique interne au béton. PhD Thesis, Chatenay Malabry, école centrale Paris, Paris.
[9]  Malbois, M., Divet, L., Lavaud, S. and Torrenti, J.M. (2017) Influence de la nature pétrographique des granulats et de cycles de séchage sur le développement de la réaction sulfatique interne dans le béton. 23ème Congès Francais de Mécanique, Lille, 28 Aout au 1er Septembre 2017, 3-8.
[10]  Chaib, O., Benosman, A.S., Kazi Tani, N., Senhadji, Y., Mouli, M., Taibi, H. and Hamadache, M. (2017) The Evolution of Shrinkage Strain of Pet-Mortar Composite Eco-Materials. Journal of Fundamental and Applied Science, 9, 136-152.
http://www.jfas.info
https://doi.org/10.4314/jfas.v9i1.10
[11]  Hossein, M., Shek, P.N., Rayed, A. and Mahmood, M.T. (2021) Synergistic Effects of Waste Plastic Food Tray as Low-Cost Fibrous Materials and Palm Oil Fuel Ash on Transport Properties and Drying Shrinkage of Concrete. Journal of Building Engineering, 42, Article ID: 102826.
https://doi.org/10.1016/j.jobe.2021.102826
[12]  Víctor, R.C., Luís, E., Jorge de, B., Vanesa, O.L. and Juan, M.M. (2021) Effect of the Maturity of Recycled Aggregates on the Mechanical Properties and Autogenous and Drying Shrinkage of High-Performance Concrete. Construction and Building Materials, 299, Article ID: 124001.
https://doi.org/10.1016/j.conbuildmat.2021.124001
[13]  Chen, W., Xie, Y., Li, B., Li, B., Wang, J. and Thom, N. (2021) Role of Aggregate and Fibre in Strength and Drying Shrinkage of Alkali-Activated Slag Mortar. Construction and Building Materials, 299, Article ID: 124002.
https://doi.org/10.1016/j.conbuildmat.2021.124002
[14]  Fahed, A., Hossein, M., Mahmood, M.T., Rayed, A., Hussam, A., Yousef, A. and Abdulaziz, A. (2020) Drying Shrinkage and Creep Properties of Prepacked Aggregate Concrete Reinforced with Waste Polypropylene Fibers. Journal of Building Engineering, 32, Article ID: 101522.
https://doi.org/10.1016/j.jobe.2020.101522
[15]  Koide, H., Tomon, M. and Sasaki, T. (2002) Investigation of the Use of Waste Plastic as an Aggregate for Lightweight Concrete.
https://doi.org/10.1680/scc.31777.0018
[16]  Marques da, S.A., Brito, J. and Veiga, M. (2014) Incorporation of Fine Plastic Aggregates in Rendering Mortars. Construction and Building Materials, 71, 226-236.
[17]  Alyousef, R., Ahmad, W., Ahmad, A., Aslam, F., Joyklad, P. and Alabduljabbar, H. (2021) Potential Use of Recycled Plastic and Rubber Aggregate in Cementitious Materials for Sustainable Construction: A Review. Journal of Cleaner Production, 329, Article ID: 129736.
https://doi.org/10.1016/j.jclepro.2021.129736
[18]  Benamrane, D.Z. (2017) L’effet de la méthode de formulation sur la résistance à la compression du béton. Université KASDI Merbah Ouargla.
[19]  AFNOR, norme XP-P 18-305 (1966) Béton prêt à l’emploi.
[20]  Norme européenne NF EN12390-1 (2001) Essai pour béton durci, partie: Forme, dimensions et autres exigences relatives aux éprouvettes et aux moules.
[21]  LCPC (2007) Recommandations pour la prévention des désordres dus à la réaction sulfatique interne. Journée technique du LCPC, Octobre 2007, Paris.
[22]  Mouad, J., Frédéric, J., Céline, P. and Moulay, S. (2018) Caractérisation de l’expansion due à la réaction sulfatique interne à l’échelle de l’interphase pate de ciment-granulat. 36èmes Rencontres Universitaires de Génie Civil de l’AUGC, Saint Etienne, France. hal01898237.
[23]  Frigione, M. (2010) Recycling of PET Bottles as Fine Aggregate in Concrete. Waste Management, 30, 1101-1106.
https://doi.org/10.1016/j.wasman.2010.01.030
[24]  Mounanga, P., Gbongbon, W., Poullain, P. and Turcry, P. (2008) Proportioning and Character-ization of Lightweight Concrete Mixtures Made with Rigid Polyuethane Foam Wastes. Cement and Concrete Composite, 30, 806-814.
https://doi.org/10.1016/j.cemconcomp.2008.06.007
[25]  Kou, S.C., Lee, G., Poon, C.S. and Lai, W.L. (2009) Properties of Lightweight Aggregate Concrete Prepared with PVC Granules Derived from Scraped PVC Pipes. Waste Management, 29, 621-628.
https://doi.org/10.1016/j.wasman.2008.06.014
[26]  Dame, K. (2014) Etude du béton à l’échelle microscopique: Simulation numérique et tests de microindentation. Génie civil. INSA de Rennes. Francais.
[27]  Hannawi, K., Kamali, B.S. and Prince, W. (2010) Physical and Mechanical Properties of Mortars Containing PET and PC Waste Aggregates. Waste Management, 30, 2312-2320.
https://doi.org/10.1016/j.wasman.2010.03.028
[28]  Safi, B., Sebki, G., Chahour, K. and Belaid, A. (2017) Recycling of Foundry Sand Wastes in Self-Compacting Mortars: Use as Fine Aggregates.
[29]  Yvan, T. (2018) Evaluation de structures en béton armé atteintes de réaction sulfatique interne. Génie civil. Université Paul Sabatier—Toulouse III, Francais. NNT: 2018TOU30271. tel-02366251.
[30]  Al Shamaa, M. (2012) étude du risque de développement d’une réaction sulfatique interne et de ses conséquences dans les bétons de structure des ouvrages nucléaires. PhD Thesis, Université Paris-Est, Paris.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133