全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of RNA Epitranscriptomics and the RNA Fat Mass and Obesity-Associated Demethylase in Triple Negative Breast Cancer

DOI: 10.4236/abcr.2023.122004, PP. 27-50

Keywords: Breast Cancer, Obesity, Fat Mass and Obesity-Associated, Chemotherapy, Ep-igenetics, RNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

Breast cancer is one of the most commonly diagnosed cancers and one of the most significant sources of cancer mortality. Triple negative breast cancer (TNBC) is a particularly aggressive subtype that has proven difficult to treat with standard chemotherapies. Obesity has also been shown to exacerbate breast cancer, and diagnoses of these two diseases frequently overlap. Both conditions are regulated in part by the fat mass and obesity-associated (FTO) demethylase, an RNA demethylase which may drive breast cancers through epigenetic alterations to gene expression. Methods of inhibiting FTO have been researched in vitro and in vivo as an alternative or adjunct to chemotherapies in multiple cancers, including breast cancer. Translating knowledge of the role of FTO in breast cancer and the development of novel agents may allow for improvements in the treatment of this refractory cancer. This review therefore aims to provide an overview of existing and developing chemical inhibitors of FTO that could be innovatively studied for the treatment of TNBC and associated comorbidity.

References

[1]  Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2]  Eliyatkin, N., Yalcin, E., Zengel, B., Aktas, S. and Vardar, E. (2015) Molecular Classification of Breast Carcinoma: from Traditional, Old-Fashioned Way to a New Age, and a New Way. The Journal of Breast Health, 11, 59-66.
https://doi.org/10.5152/tjbh.2015.1669
[3]  Yin, L., Duan, J.J., Bian, X.W. and Yu, S.C. (2020) Triple-Negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Research, 22, Article No. 61.
https://doi.org/10.1186/s13058-020-01296-5
[4]  Cancer Genome Atlas N. (2012) Comprehensive Molecular Portraits of Human Breast Tumours. Nature, 490, 61-70.
https://doi.org/10.1038/nature11412
[5]  Liu, Y., Zhu, C., Tang, L., Chen, Q., Guan, N., Xu, K. and Guan, X. (2021) MYC Dysfunction Modulates Stemness and Tumorigenesis in Breast Cancer. International Journal of Biological Sciences, 17, 178-187.
https://doi.org/10.7150/ijbs.51458
[6]  Fallah, Y., Brundage, J., Allegakoen, P. and Shajahan-Haq, A.N. (2017) MYC-Driven Pathways in Breast Cancer Subtypes. Biomolecules, 7, 53.
https://doi.org/10.3390/biom7030053
[7]  Zhou, W., Wang, G. and Guo, S. (2013) Regulation of Angiogenesis via Notch Signaling in Breast Cancer and Cancer Stem Cells. Biochimica et Biophysica Acta, 1836, 304-320.
https://doi.org/10.1016/j.bbcan.2013.10.003
[8]  Pappas, K., Martin, T.C., Wolfe, A.L., Nguyen, C.B., Su, T., Jin, J., Hibshoosh, H. and Parsons, R. (2021) NOTCH and EZH2 Collaborate to Repress PTEN Expression in Breast Cancer. Communications Biology, 4, 312.
https://doi.org/10.1038/s42003-021-01825-8
[9]  Baker, A., Wyatt, D., Bocchetta, M., Li, J., Filipovic, A., Green, A., Peiffer, D.S., Fuqua, S., Miele, L., Albain, K.S., et al. (2018) Notch-1-PTEN-ERK1/2 Signaling Axis Promotes HER2+ Breast Cancer Cell Proliferation and Stem Cell Survival. Oncogene, 37, 4489-4504.
https://doi.org/10.1038/s41388-018-0251-y
[10]  BeLow, M. and Osipo, C. (2020) Notch Signaling in Breast Cancer: A Role in Drug Resistance. Cells, 9, 2204.
https://doi.org/10.3390/cells9102204
[11]  Krishnamurthy, N. and Kurzrock, R. (2018) Targeting the Wnt/Beta-Catenin Pathway in Cancer: Update on Effectors and Inhibitors. Cancer Treatment Reviews, 62, 50-60.
https://doi.org/10.1016/j.ctrv.2017.11.002
[12]  Yin, X., Xiang, T., Li, L., Su, X., Shu, X., Luo, X., Huang, J., Yuan, Y., Peng, W., Oberst, M., et al. (2013) DACT1, an Antagonist to Wnt/beta-Catenin Signaling, Suppresses Tumor Cell Growth and Is Frequently Silenced in Breast Cancer. Breast Cancer Research, 15, R23.
https://doi.org/10.1186/bcr3399
[13]  Veeck, J., Bektas, N., Hartmann, A., Kristiansen, G., Heindrichs, U., Knüchel, R. and Dahl, E. (2008) Wnt Signalling in Human Breast Cancer: Expression of the Putative Wnt Inhibitor Dickkopf-3 (DKK3) Is Frequently Suppressed by Promoter Hypermethylation in Mammary Tumours. Breast Cancer Research, 10, R82.
https://doi.org/10.1186/bcr2151
[14]  Yang, J., Han, F., Liu, W., Chen, H., Hao, X., Jiang, X., Yin, L., Huang, Y., Cao, J., Zhang, H, et al. (2017) ALX4, an Epigenetically down Regulated Tumor Suppressor, Inhibits Breast Cancer Progression by Interfering Wnt/beta-Catenin Pathway. Journal of Experimental & Clinical Cancer Research, 36, 170.
https://doi.org/10.1186/s13046-017-0643-9
[15]  Fu, D.Y., Wang, Z.M., Li, C., Wang, B.L., Shen, Z.Z., Huang, W. and Shao, Z.M. (2010) Sox17, the Canonical Wnt Antagonist, Is Epigenetically Inactivated by Promoter Methylation in Human Breast Cancer. Breast Cancer Research and Treatment, 119, 601-612.
https://doi.org/10.1007/s10549-009-0339-8
[16]  Blakemore, A.I. and Froguel, P. (2008) Is Obesity Our Genetic Legacy? Journal of Clinical Endocrinology & Metabolism, 93, s51-s56.
https://doi.org/10.1210/jc.2008-1676
[17]  Lin, A.P., Qiu, Z., Ethiraj, P., Sasi, B., Jaafar, C., Rakheja, D. and Aguiar, R.C.T. (2022) MYC, Mitochondrial Metabolism and O-GlcNAcylation Converge to Modulate the Activity and Subcellular Localization of DNA and RNA Demethylases. Leukemia, 36, 1150-1159.
https://doi.org/10.1038/s41375-021-01489-7
[18]  Li, Y., Su, R., Deng, X., Chen, Y. and Chen, J. (2022) FTO in Cancer: Functions, Molecular Mechanisms, and Therapeutic Implications. Trends Cancer, 8, 598-614.
https://doi.org/10.1016/j.trecan.2022.02.010
[19]  Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y., et al. (2012) N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nature Chemical Biology, 7, 885-887.
https://doi.org/10.1038/nchembio.687
[20]  Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vågbø, C.B., Shi, Y., Wang, W.L., Song, S.H., et al. (2013) ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Molecular Cell, 49, 18-29.
https://doi.org/10.1016/j.molcel.2012.10.015
[21]  Azzam, S.K., Alsafar, H. and Sajini, A.A. (2022) FTO m6A Demethylase in Obesity and Cancer: Implications and Underlying Molecular Mechanisms. International Journal of Molecular Sciences, 23, 3800.
https://doi.org/10.3390/ijms23073800
[22]  Tan, A., Dang, Y., Chen, G. and Mo, Z. (2015) Overexpression of the Fat Mass and Obesity Associated Gene (FTO) in Breast Cancer and Its Clinical Implications. International Journal of Clinical and Experimental Pathology, 8, 13405-13410.
[23]  Huang, H., Wang, Y., Kandpal, M., Zhao, G., Cardenas, H., Ji, Y., Chaparala, A., Tanner, E.J., Chen, J., et al. (2020) FTO-Dependent N (6)-Methyladenosine Modifications Inhibit Ovarian Cancer Stem Cell Self-Renewal by Blocking cAMP Signaling. Cancer Research, 80, 3200-3214.
https://doi.org/10.1158/0008-5472.CAN-19-4044
[24]  Steele, C.B., Thomas, C.C., Henley, S.J., Massetti, G.M., Galuska, D.A., Agurs-Collins, T., Puckett, M. and Richardson, L.C. (2017) Vital Signs: Trends in Incidence of Cancers Associated with Overweight and Obesity—United States, 2005-2014. Morbidity and Mortality Weekly Report, 66, 1052-1058.
https://doi.org/10.15585/mmwr.mm6639e1
[25]  Lan, N., Lu, Y., Zhang, Y., Pu, S., Xi, H., Nie, X., Liu, J. and Yuan, W. (2020) FTO—A Common Genetic Basis for Obesity and Cancer. Frontiers in Genetics, 11, Article ID: 559138.
https://doi.org/10.3389/fgene.2020.559138
[26]  Huang, Z., Hankinson, S.E., Colditz, G.A., Stampfer, M.J., Hunter, D.J., Manson, J.E., Hennekens, C.H., Rosner, B., Speizer, F.E. and Willett, W.C. (1997) Dual Effects of Weight and Weight Gain on Breast Cancer Risk. JAMA, 278, 1407-1411.
https://doi.org/10.1001/jama.1997.03550170037029
[27]  Larsson, S.C., Mantzoros, C.S. and Wolk, A. (2007) Diabetes Mellitus and Risk of Breast Cancer: A Meta-Analysis. International Journal of Cancer, 121, 856-862.
https://doi.org/10.1002/ijc.22717
[28]  Kaklamani, V., Yi, N., Sadim, M., Siziopikou, K., Zhang, K., Xu, Y., Tofilon, S., Agarwal, S., Pasche, B. and Mantzoros, C. (2011) The Role of the Fat Mass and Obesity Associated Gene (FTO) in Breast Cancer Risk. BMC Medical Genetics, 12, 52.
https://doi.org/10.1186/1471-2350-12-52
[29]  Lee, K., Kruper, L., Dieli-Conwright, C.M. and Mortimer, J.E. (2019) The Impact of Obesity on Breast Cancer Diagnosis and Treatment. Current Oncology Reports, 21, Article No. 41.
https://doi.org/10.1007/s11912-019-0787-1
[30]  Li, B., Sun, S., Li, J.J., Yuan, J.P., Sun, S.R. and Wu, Q. (2023) Adipose Tissue Macrophages: Implications for Obesity-Associated Cancer. Military Medical Research, 10, Article No. 1.
https://doi.org/10.1186/s40779-022-00437-5
[31]  Strong, A.L., Burow, M.E., Gimble, J.M. and Bunnell, B.A. (2015) Concise Review: The Obesity Cancer Paradigm: Exploration of the Interactions and Crosstalk with Adipose Stem Cells. Stem Cells, 33, 318-326.
https://doi.org/10.1002/stem.1857
[32]  Laplante, M. and Sabatini, D.M. (2012) mTOR Signaling in Growth Control and Disease. Cell, 149, 274-293.
https://doi.org/10.1016/j.cell.2012.03.017
[33]  Gulati, P., Cheung, M.K., Antrobus, R., Church, C.D., Harding, H.P., Tung, Y.C., Rimmington, D., Ma, M., Ron, D., Lehner, P.J., et al. (2013) Role for the Obesity-Related FTO Gene in the Cellular Sensing of Amino Acids. Proceedings of the National Academy of Sciences of the United States of America, 110, 2557-2562.
https://doi.org/10.1073/pnas.1222796110
[34]  Liu, Y., Wang, R., Zhang, L., Li, J., Lou, K. and Shi, B. (2017) The Lipid Metabolism Gene FTO Influences Breast Cancer Cell Energy Metabolism via the PI3K/AKT Signaling Pathway. Oncology Letters, 13, 4685-4690.
https://doi.org/10.3892/ol.2017.6038
[35]  Gholamalizadeh, M., Jarrahi, A.M., Akbari, M.E., Bourbour, F., Mokhtari, Z., Salahshoornezhad, S. and Doaei, S. (2020) Association between FTO Gene Polymorphisms and Breast Cancer: The Role of Estrogen. Expert Review of Endocrinology & Metabolism, 15, 115-121.
https://doi.org/10.1080/17446651.2020.1730176
[36]  Deng, N., Zhou, H., Fan, H. and Yuan, Y. (2017) Single Nucleotide Polymorphisms and Cancer Susceptibility. Oncotarget, 8, 110635-110649.
https://doi.org/10.18632/oncotarget.22372
[37]  Hernandez-Caballero, M.E. and Sierra-Ramirez, J.A. (2015) Single Nucleotide Polymorphisms of the FTO Gene and Cancer Risk: An Overview. Molecular Biology Reports, 42, 699-704.
https://doi.org/10.1007/s11033-014-3817-y
[38]  Li, Y., Zhou, D., Liu, Q., Zhu, W., Ye, Z. and He, C. (2022) Gene Polymorphisms of m6A Erasers FTO and ALKBH1 Associated with Susceptibility to Gastric Cancer. Pharmacogenomics and Personalized Medicine, 15, 547-559.
https://doi.org/10.2147/PGPM.S360912
[39]  Montazeri, F., Hatami, H., Fathi, S., Hasanpour Ardekanizadeh, N., Bourbour, F., Rastgoo, S., Shafiee, F., Akbari, M.E., Gholamalizadeh, M., Mosavi Jarrahi, S.A., et al. (2022) FTO Genotype Was Associated with Breast Cancer in HER2 Negative Patients. Clinical Nutrition ESPEN, 49, 495-498.
https://doi.org/10.1016/j.clnesp.2022.02.122
[40]  Doaei, S., Bourbour, F., Rastgoo, S., Akbari, M.E., Gholamalizadeh, M., Hajipour, A., Moslem, A., Ghorat, F., Badeli, M., Bagheri, S.E., et al. (2021) Interactions of Anthropometric Indices, rs9939609 FTO Gene Polymorphism and Breast Cancer: A Case-Control Study. Journal of Cellular and Molecular Medicine, 25, 3252-3257.
https://doi.org/10.1111/jcmm.16394
[41]  Mozafarizadeh, M., Parvizi Omran, S., Kordestani, Z., Manshadi Dehghan, H., Faridazar, A. and Houshmand, M. (2019) Association of Obesity-Related Genetic Variants (FTO and MC4R) with Breast Cancer Risk: A Population-Based Case-Control Study in Iran. Iranian Journal of Biotechnology, 17, e2460.
https://doi.org/10.30498%2FIJB.2019.99594
[42]  Singh, B., Kinne, H.E., Milligan, R.D., Washburn, L.J., Olsen, M. and Lucci, A. (2016) Important Role of FTO in the Survival of Rare Panresistant Triple-Negative Inflammatory Breast Cancer Cells Facing a Severe Metabolic Challenge. PLOS ONE, 11, e0159072.
https://doi.org/10.1371/journal.pone.0159072
[43]  Garcia-Closas, M., Couch, F.J., Lindstrom, S., Michailidou, K., Schmidt, M.K., Brook, M.N., Orr, N., Rhie, S.K., Riboli, E., Feigelson, H.S., et al. (2013) Genome-Wide Association Studies Identify Four ER Negative-Specific Breast Cancer Risk Loci. Nature Genetics, 45, 392-398.
https://doi.org/10.1038/ng.2561
[44]  Long, J., Zhang, B., Signorello, L.B., Cai, Q., Deming-Halverson, S., Shrubsole, M.J., Sanderson, M., Dennis, J., Michailidou, K., Easton, D.F., et al. (2013) Evaluating Genome-Wide Association Study-Identified Breast Cancer Risk Variants in African-American Women. PLOS ONE, 8, e58350.
https://doi.org/10.1371/journal.pone.0058350
[45]  da Cunha, P.A., de Carlos Back L.K., Sereia, A.F.R., Kubelka, C., Ribeiro, M.C.M., Fernandes, B.L. and de Souza, I.R. (2013) Interaction between Obesity-Related Genes, FTO and MC4R, Associated to an Increase of Breast Cancer Risk. Molecular Biology Reports, 40, 6657–6664.
https://doi.org/10.1007/s11033-013-2780-3
[46]  Niu, Y., Lin, Z., Wan, A., Chen, H., Liang, H., Sun, L., Wang, Y., Li, X., Xiong, X.F., Wei, B., et al. (2019) RNA N6-Methyladenosine Demethylase FTO Promotes Breast Tumor Progression through Inhibiting BNIP3. Molecular Cancer, 18, 46.
https://doi.org/10.1186/s12943-019-1004-4
[47]  Shi, Y., Zheng, C., Jin, Y., Bao, B., Wang, D., Hou, K., Feng, J., Tang, S., Qu, X., Liu, Y., et al. (2020) Reduced Expression of METTL3 Promotes Metastasis of Triple-Negative Breast Cancer by m6A Methylation-Mediated COL3A1 Up-Regulation. Frontiers in Oncology, 10, 1126.
https://doi.org/10.3389/fonc.2020.01126
[48]  Cui, X., Nilsson, K., Kajitani, N. and Schwartz, S. (2022) Overexpression of m6A-Factors METTL3, ALKBH5, and YTHDC1 Alters HPV16 mRNA Splicing. Virus Genes, 58, 98-112.
https://doi.org/10.1007/s11262-022-01889-6
[49]  Jiang, X., Liu, B., Nie, Z., Duan, L., Xiong, Q., Jin, Z., Yang, C. and Chen, Y. (2021) The Role of m6A Modification in the Biological Functions and Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 74.
https://doi.org/10.1038/s41392-020-00450-x
[50]  Oerum, S., Meynier, V., Catala, M. and Tisne, C. (2021) A Comprehensive Review of m6A/m6Am RNA Methyltransferase Structures. Nucleic Acids Research, 49, 7239-7255.
https://doi.org/10.1093/nar/gkab378
[51]  Vu, L.P., Pickering, B.F., Cheng, Y., Zaccara, S., Nguyen, D., Minuesa, G., Chou, T., Chow, A., Saletore, Y., et al. (2017) The N(6)-Methyladenosine (m(6)A)-Forming Enzyme METTL3 Controls Myeloid Differentiation of Normal Hematopoietic and Leukemia Cells. Nature Medicine, 23, 1369-1376.
https://doi.org/10.1038/nm.4416
[52]  Weng, H., Huang, H., Wu, H., Qin, X., Zhao, B.S., Dong, L., Shi, H., Skibbe, J., Shen, C., Hu, C., et al. (2018) METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m(6)A Modification. Cell Stem Cell, 22, 191-205e199.
https://doi.org/10.1016/j.stem.2017.11.016
[53]  Cui, Q., Shi, H., Ye, P., Li, L., Qu, Q., Sun, G., Sun, G., Lu, Z., Huang, Y., Yang, C.G., et al. (2017) m(6)A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Reports, 18, 2622-2634.
https://doi.org/10.1016/j.celrep.2017.02.059
[54]  Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., et al. (2014) N6-Methyladenosine-Dependent Regulation of Messenger RNA Stability. Nature, 505, 117-120.
https://doi.org/10.1038/nature12730
[55]  Zhou, L., Jiang, J., Huang, Z., Jin, P., Peng, L., Luo, M., Zhang, Z., Chen, Y., et al. (2022) Hypoxia-Induced lncRNA STEAP3-AS1 Activates Wnt/Beta-Catenin Signaling to Promote Colorectal Cancer Progression by Preventing m(6)A-Mediated Degradation of STEAP3 mRNA. Molecular Cancer, 21, Article No. 168.
https://doi.org/10.1186/s12943-022-01638-1
[56]  Su, R., Dong, L., Li, C., Nachtergaele, S., Wunderlich, M., Qing, Y., Deng, X., Wang, Y., Weng, X., Hu, C., et al. (2018) R-2HG Exhibits Anti-Tumor Activity by Targeting FTO/m(6)A/MYC/CEBPA Signaling. Cell, 172, 90-105e123.
https://doi.org/10.1016/j.cell.2017.11.031
[57]  Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H. and He, C. (2015) N(6)-Methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 161, 1388-1399.
https://doi.org/10.1016/j.cell.2015.05.014
[58]  Yang, X., Shao, F., Guo, D., Wang, W., Wang, J., Zhu, R., Gao, Y., He, J. and Lu, Z. (2021) WNT/beta-Catenin-Suppressed FTO Expression Increases m(6)A of c-Myc mRNA to Promote Tumor Cell Glycolysis and Tumorigenesis. Cell Death & Disease, 12, 462.
https://doi.org/10.1038/s41419-021-03739-z
[59]  Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B.S., Mesquita, A., Liu, C., et al. (2018) Recognition of RNA N(6)-Methyladenosine by IGF2BP Proteins Enhances mRNA Stability and Translation. Nature Cell Biology, 20, 285-295.
https://doi.org/10.1038/s41556-018-0045-z
[60]  Deng, X., Su, R., Weng, H., Huang, H., Li, Z. and Chen, J. (2018) RNA N(6)-Methyladenosine Modification in Cancers: Current Status and Perspectives. Cell Research, 28, 507-517.
https://doi.org/10.1038/s41422-018-0034-6
[61]  Mauer, J., Luo, X., Blanjoie, A., Jiao, X., Grozhik, A.V., Patil, D.P., Linder, B., Pickering, B.F., Vasseur, J.J., Chen, Q., et al. (2017) Reversible Methylation of m(6)Am in the 5’ Cap Controls mRNA Stability. Nature, 541, 371-375.
https://doi.org/10.1038/nature21022
[62]  Zepecki, J.P., Karambizi, D., Fajardo, J.E., Snyder, K.M., Guetta-Terrier, C., Tang, O.Y., Chen, J.S., Sarkar, A., Fiser, A., Toms, S.A., et al. (2021) miRNA-Mediated Loss of m6A Increases Nascent Translation in Glioblastoma. PLOS Genetics, 17, e1009086.
https://doi.org/10.1371/journal.pgen.1009086
[63]  Zhao, X., Yang, Y., Sun, B.F., Zhao, Y.L. and Yang, Y.G. (2014) FTO and Obesity: Mechanisms of Association. Current Diabetes Reports, 14, Article No. 486.
https://doi.org/10.1007/s11892-014-0486-0
[64]  Li, Y., Wu, K., Quan, W., Yu, L., Chen, S., Cheng, C., Wu, Q., Zhao, S., Zhang, Y. and Zhou, L. (2019) The Dynamics of FTO Binding and Demethylation from the m(6)A Motifs. RNA Biology, 16, 1179-1189.
https://doi.org/10.1080/15476286.2019.1621120
[65]  Church, C., Moir, L., McMurray, F., Girard, C., Banks, G.T., Teboul, L., Wells, S., Bruning, J.C., Nolan, P.M., Ashcroft, F.M., et al. (2010) Overexpression of Fto Leads to Increased Food Intake and Results in Obesity. Nature Genetics, 42, 1086-1092.
https://doi.org/10.1038/ng.713
[66]  Zhang, M., Zhang, Y., Ma, J., Guo, F., Cao, Q., Zhang, Y., Zhou, B., Chai, J., Zhao, W. and Zhao, R. (2015) The Demethylase Activity of FTO (Fat Mass and Obesity Associated Protein) Is Required for Preadipocyte Differentiation. PLOS ONE, 10, e0133788.
https://doi.org/10.1371/journal.pone.0133788
[67]  Fischer, J., Koch, L., Emmerling, C., Vierkotten, J., Peters, T., Bruning, J.C. and Ruther, U. (2009) Inactivation of the Fto Gene Protects from Obesity. Nature, 458, 894-898.
https://doi.org/10.1038/nature07848
[68]  Frayling, T.M., Timpson, N.J., Weedon, M.N., Zeggini, E., Freathy, R.M., Lindgren, C.M., Perry, J.R., Elliott, K.S., Lango, H., Rayner, N.W., et al. (2007) A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science, 316, 889-894.
https://doi.org/10.1126/science.1141634
[69]  Loos, R.J. and Bouchard, C. (2008) FTO: The First Gene Contributing to Common Forms of Human Obesity. Obesity Reviews, 9, 246-250.
https://doi.org/10.1111/j.1467-789X.2008.00481.x
[70]  Wang, L., Song, C., Wang, N., Li, S., Liu, Q., Sun, Z., Wang, K., Yu, S.C. and Yang, Q. (2020) NADP Modulates RNA m(6)A Methylation and Adipogenesis via Enhancing FTO Activity. Nature Chemical Biology, 16, 1394-1402.
https://doi.org/10.1038/s41589-020-0601-2
[71]  Wang, X., Wu, R., Liu, Y., Zhao, Y., Bi, Z., Yao, Y., Liu, Q., Shi, H., Wang, F. and Wang, Y. (2020) m(6)A mRNA Methylation Controls Autophagy and Adipogenesis by Targeting Atg5 and Atg7. Autophagy, 16, 1221-1235.
https://doi.org/10.1080/15548627.2019.1659617
[72]  Peng, S., Xiao, W., Ju, D., Sun, B., Hou, N., Liu, Q., Wang, Y., Zhao, H., Gao, C., Zhang, S., et al. (2019) Identification of Entacapone as a Chemical Inhibitor of FTO Mediating Metabolic Regulation through FOXO1. Science Translational Medicine, 11, eaau7116.
https://doi.org/10.1126/scitranslmed.aau7116
[73]  Stratigopoulos, G., LeDuc, C.A., Cremona, M.L., Chung, W.K. and Leibel, R.L. (2011) Cut-Like Homeobox 1 (CUX1) Regulates Expression of the Fat Mass and Obesity-Associated and Retinitis Pigmentosa GTPase Regulator-Interacting Protein-1-Like (RPGRIP1L) Genes and Coordinates Leptin Receptor Signaling. Journal of Biological Chemistry, 286, 2155-2170.
https://doi.org/10.1074/jbc.M110.188482
[74]  Jowett, J.B.M., Curran, J.E., Johnson, M.P., Carless, M.A., Göring, H.H.H., Dyer, T.D., Cole, S.A., Comuzzie, A.G., MacCluer, J.W., Moses, E.K., et al. (2010) Genetic Variation at the FTO Locus Influences RBL2 Gene Expression. Diabetes, 59, 726-732.
https://doi.org/10.2337/db09-1277
[75]  Smemo, S., Tena, J.J., Kim, K.H., Gamazon, E.R., Sakabe, N.J., Gomez-Marin, C., Aneas, I., Credidio, F.L., Sobreira, D.R., Wasserman, N.F., et al. (2014) Obesity-Associated Variants within FTO Form Long-Range Functional Connections with IRX3. Nature, 507, 371-375.
https://doi.org/10.1038/nature13138
[76]  Claussnitzer, M., Dankel, S.N., Kim, K.H., Quon, G., Meuleman, W., Haugen, C., Glunk, V., Sousa, I.S., Beaudry, J.L., Puviindran, V., et al. (2015) FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. The New England Journal of Medicine, 373, 895-907.
https://doi.org/10.1056/NEJMoa1502214
[77]  Karra, E., O’Daly, O.G., Choudhury, A.I., Yousseif, A., Millership, S., Neary, M.T., Scott, W.R., Chandarana, K., Manning, S., Hess, M.E., et al. (2013) A Link between FTO, Ghrelin, and Impaired Brain Food-Cue Responsivity. Journal of Clinical Investigation, 123, 3539-3551.
https://doi.org/10.1172/JCI44403
[78]  Zhao, X., Yang, Y., Sun, B.F., Shi, Y., Yang, X., Xiao, W., Hao, Y.J., Ping, X.L., Chen, Y.S., Wang, W.J., et al. (2014) FTO-Dependent Demethylation of N6-Methyladenosine Regulates mRNA Splicing and Is Required for Adipogenesis. Cell Research, 24, 1403-1419.
https://doi.org/10.1038/cr.2014.151
[79]  Wu, W., Feng, J., Jiang, D., Zhou, X., Jiang, Q., Cai, M., Wang, X., Shan, T. and Wang, Y. (2017) AMPK Regulates Lipid Accumulation in Skeletal Muscle Cells through FTO-Dependent Demethylation of N(6)-Methyladenosine. Scientific Reports, 7, 41606.
https://doi.org/10.1038/srep41606
[80]  Song, T., Yang, Y., Wei, H., Xie, X., Lu, J., Zeng, Q., Peng, J., Zhou, Y., Jiang, S. and Peng, J. (2019) Zfp217 Mediates m6A mRNA Methylation to Orchestrate Transcriptional and Post-Transcriptional Regulation to Promote Adipogenic Differentiation. Nucleic Acids Research, 47, 6130-6144.
https://doi.org/10.1093/nar/gkz312
[81]  Shimura, T., Kandimalla, R., Okugawa, Y., Ohi, M., Toiyama, Y., He, C. and Goel, A. (2022) Novel Evidence for m(6)A Methylation Regulators as Prognostic Biomarkers and FTO as a Potential Therapeutic Target in Gastric Cancer. British Journal of Cancer, 126, 228-237.
https://doi.org/10.1038/s41416-021-01581-w
[82]  Zhang, Z., Zhou, D., Lai, Y., Liu, Y., Tao, X., Wang, Q., Zhao, G., Gu, H., Liao, H., Zhu, Y., et al. (2012) Estrogen Induces Endometrial Cancer Cell Proliferation and Invasion by Regulating the Fat Mass and Obesity-Associated Gene via PI3K/AKT and MAPK Signaling Pathways. Cancer Letters, 319, 89-97.
https://doi.org/10.1016/j.canlet.2011.12.033
[83]  Zhu, Y., Shen, J., Gao, L. and Feng, Y. (2016) Estrogen Promotes Fat Mass and Obesity-Associated Protein Nuclear Localization and Enhances Endometrial Cancer Cell Proliferation via the mTOR Signaling Pathway. Oncology Reports, 35, 2391-2397.
https://doi.org/10.3892/or.2016.4613
[84]  Zhang, L., Wan, Y., Zhang, Z., Jiang, Y., Lang, J., Cheng, W. and Zhu, L. (2021) FTO Demethylates m6A Modifications in HOXB13 mRNA and Promotes Endometrial Cancer Metastasis by Activating the WNT Signalling Pathway. RNA Biology, 18, 1265-1278.
https://doi.org/10.1080/15476286.2020.1841458
[85]  Liu, J., Ren, D., Du, Z., Wang, H., Zhang, H. and Jin, Y. (2018) m(6)A Demethylase FTO Facilitates Tumor Progression in Lung Squamous Cell Carcinoma by Regulating MZF1 Expression. Biochemical and Biophysical Research Communications, 502, 456-464.
https://doi.org/10.1016/j.bbrc.2018.05.175
[86]  Li, J., Han, Y., Zhang, H., Qian, Z., Jia, W., Gao, Y., Zheng, H. and Li, B. (2019) The m6A Demethylase FTO Promotes the Growth of Lung Cancer Cells by Regulating the m6A Level of USP7 mRNA. Biochemical and Biophysical Research Communications, 512, 479-485.
https://doi.org/10.1016/j.bbrc.2019.03.093
[87]  Brix, D.M., Tvingsholm, S.A., Hansen, M.B., Clemmensen, K.B., Ohman, T., Siino, V., Lambrughi, M., Hansen, K., Puustinen, P., Gromova, I., et al. (2019) Release of Transcriptional Repression via ErbB2-Induced, SUMO-Directed Phosphorylation of Myeloid Zinc Finger-1 Serine 27 Activates Lysosome Redistribution and Invasion. Oncogene, 38, 3170-3184.
https://doi.org/10.1038/s41388-018-0653-x
[88]  Xia, X., Liao, Y., Huang, C., Liu, Y., He, J., Shao, Z., Jiang, L., Dou, Q.P., Liu, J. and Huang, H. (2019) Deubiquitination and Stabilization of Estrogen Receptor Alpha by Ubiquitin-Specific Protease 7 Promotes Breast Tumorigenesis. Cancer Letters, 465, 118-128.
https://doi.org/10.1016/j.canlet.2019.09.003
[89]  Gu, X., Zhang, Y., Li, D., Cai, H., Cai, L. and Xu, Q. (2020) N6-Methyladenosine Demethylase FTO Promotes M1 and M2 Macrophage Activation. Cell Signal, 69, Article ID: 109553.
https://doi.org/10.1016/j.cellsig.2020.109553
[90]  Tymoszuk, P., Charoentong, P., Hackl, H., Spilka, R., Müller-Holzner, E., Trajanoski, Z., Obrist, P., Revillion, F., Peyrat, J.P., Fiegl, H., et al. (2014) High STAT1 mRNA Levels but Not Its Tyrosine Phosphorylation Are Associated with Macrophage Infiltration and Bad Prognosis in Breast Cancer. BMC Cancer, 14, 257.
https://doi.org/10.1186/1471-2407-14-257
[91]  Tang, X., Liu, S., Chen, D., Zhao, Z. and Zhou, J. (2019) The Role of the Fat Mass and Obesity-Associated Protein in the Proliferation of Pancreatic Cancer Cells. Oncology Letters, 17, 2473-2478.
https://doi.org/10.3892/ol.2018.9873
[92]  Huang, Y., Yan, J., Li, Q., Li, J., Gong, S., Zhou, H., Gan, J., Jiang, H., Jia, G.F., Luo, C., et al. (2015) Meclofenamic Acid Selectively Inhibits FTO Demethylation of m6A over ALKBH5. Nucleic Acids Research, 43, 373-384.
https://doi.org/10.1093/nar/gku1276
[93]  Huff, S., Tiwari, S.K., Gonzalez, G.M., Wang, Y. and Rana, T.M. (2021) m(6)A-RNA Demethylase FTO Inhibitors Impair Self-Renewal in Glioblastoma Stem Cells. ACS Chemical Biology, 16, 324-333.
https://doi.org/10.1021/acschembio.0c00841
[94]  Qing, Y., Dong, L., Gao, L., Li, C., Li, Y., Han, L., Prince, E., Tan, B., Deng, X., Wetzel, C., et al. (2021) R-2-Hydroxyglutarate Attenuates Aerobic Glycolysis in Leukemia by Targeting the FTO/m(6)A/PFKP/LDHB Axis. Molecular Cell, 81, 922-939e929.
https://doi.org/10.1016/j.molcel.2020.12.026
[95]  Chou, F.J., Liu, Y., Lang, F. and Yang, C. (2021) D-2-Hydroxyglutarate in Glioma Biology. Cells, 10, 2345.
https://doi.org/10.3390/cells10092345
[96]  Carbonneau, M., Laurence, M.G., Lalonde, M.E., Germain, M.A., Motorina, A., Guiot, M.C., Secco, B., Vincent, E.E., Tumber, A., Hulea, L., et al. (2016) The Oncometabolite 2-Hydroxyglutarate Activates the mTOR Signalling Pathway. Nature Communications, 7, 12700.
https://doi.org/10.1038/ncomms12700
[97]  Liu, Y., Lu, Y., Li, A., Celiku, O., Han, S., Qian, M. and Yang, C. (2020) mTORC2/Rac1 Pathway Predisposes Cancer Aggressiveness in IDH1-Mutated Glioma. Cancers (Basel), 12, 787.
https://doi.org/10.3390/cancers12040787
[98]  (2012) Entacapone. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet], National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda.
https://www.ncbi.nlm.nih.gov/books/NBK548152/?report=classic
[99]  Conroy, M.C., Randinitis, E.J. and Turner, J.L. (1991) Pharmacology, Pharmacokinetics, and Therapeutic Use of Meclofenamate Sodium. The Clinical Journal of Pain, 7, S44-S48.
[100]  Chen, H., Jia, B., Zhang, Q. and Zhang, Y. (2022) Meclofenamic Acid Restores Gefinitib Sensitivity by Downregulating Breast Cancer Resistance Protein and Multidrug Resistance Protein 7 via FTO/m6A-Demethylation/c-Myc in Non-Small Cell Lung Cancer. Frontiers in Oncology, 12, Article ID: 870636.
https://doi.org/10.3389/fonc.2022.870636
[101]  Huang,Y., Su, R., Sheng, Y., Dong, L., Dong, Z., Xu, H., Ni, T., Zhang, Z.S., Zhang, T., Li, C., et al. (2019) Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell, 35, 677-691e610.
https://doi.org/10.1016/j.ccell.2019.03.006
[102]  Xiao, L., Li, X., Mu, Z., Zhou, J., Zhou, P., Xie, C. and Jiang, S. (2020) FTO Inhibition Enhances the Antitumor Effect of Temozolomide by Targeting MYC-miR-155/23a Cluster-MXI1 Feedback Circuit in Glioma. Cancer Research, 80, 3945-3958.
https://doi.org/10.1158/0008-5472.CAN-20-0132
[103]  Chen, B., Ye, F., Yu, L., Jia, G., Huang, X., Zhang, X., Peng, S., Chen, K., Wang, M., Gong, S., et al. (2012) Development of Cell-Active N6-Methyladenosine RNA Demethylase FTO Inhibitor. Journal of the American Chemical Society, 134, 17963-17971.
https://doi.org/10.1021/ja3064149
[104]  Su, R., Dong, L., Li, Y., Gao, M., Han, L., Wunderlich, M., Deng, X., Li, H., Huang, Y., Gao, L., et al. (2020) Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell, 38, 79-96e11.
https://doi.org/10.1016/j.ccell.2020.04.017
[105]  Canaani, J., Danylesko, I., Shemtov, N., Zlotnick, M., Lozinsky, K., Benjamini, O., Yerushalmi, R., Nagar, M., Dor, C., Shimoni, A., et al. (2021) A Phase II Study of Bisantrene in Patients with Relapsed/Refractory Acute Myeloid Leukemia. European Journal of Haematology, 106, 260-266.
https://doi.org/10.1111/ejh.13544
[106]  Huang, L., Zhang, J., Zhu, X., Mi, X., Li, Q., Gao, J., Zhou, J., Zhou, J. and Liu, X.M. (2021) The Phytochemical Rhein Mediates M(6)A-Independent Suppression of Adipocyte Differentiation. Frontiers in Nutrition, 8, Article ID: 756803.
https://doi.org/10.3389/fnut.2021.756803
[107]  Zeyen, T., Potthoff, A.L., Nemeth, R., Heiland, D.H., Burger, M.C., Steinbach, J.P., Hau, P., Tabatabai, G., Glas, M., Schlegel, U., et al. (2022) Phase I/II Trial of Meclofenamate in Progressive MGMT-Methylated Glioblastoma under Temozolomide Second-Line Therapy—The MecMeth/NOA-24 Trial. Trials, 23, Article No. 57.
https://doi.org/10.1186/s13063-021-05977-0
[108]  Han, M., Hu, J., Lu, P., Cao, H., Yu, C., Li, X., Qian, X., Yang, X., Yang, Y., Han, N., et al. (2020) Exosome-Transmitted miR-567 Reverses Trastuzumab Resistance by Inhibiting ATG5 in Breast Cancer. Cell Death & Disease, 11, Article No. 43.
https://doi.org/10.1038/s41419-020-2250-5
[109]  Zeng, D., Liang, Y.K., Xiao, Y.S., Wei, X.L., Lin, H.Y., Wu, Y., Bai, J.W., Chen, M. and Zhang, G.J. (2020) Inhibition of Notch1 Reverses EMT and Chemoresistance to Cisplatin via Direct Downregulation of MCAM in Triple-Negative Breast Cancer Cells. International Journal of Cancer, 147, 490-504.
https://doi.org/10.1002/ijc.32911
[110]  Miao, K., Lei, J.H., Valecha, M.V., Zhang, A., Xu, J., Wang, L., Lyu, X., Chen, S., Miao, Z., Zhang, X., et al. (2020) NOTCH1 Activation Compensates BRCA1 Deficiency and Promotes Triple-Negative Breast Cancer Formation. Nature Communications, 11, Article No. 3256.
https://doi.org/10.1038/s41467-020-16936-9
[111]  Yi, W., Yu, Y., Li, Y., Yang, J., Gao, S. and Xu, L. (2021) The Tumor-Suppressive Effects of Alpha-Ketoglutarate-Dependent Dioxygenase FTO via N6-Methyladenosine RNA Methylation on Bladder Cancer Patients. Bioengineered, 12, 5323-5333.
https://doi.org/10.1080/21655979.2021.1964893

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413