全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双层压杆支撑结构耗能特性及减振性能研究
Energy Dissipation Characteristics and Vibration Reduction Performance of Bilayered Bracing Structure

DOI: 10.12677/OJAV.2023.111003, PP. 19-30

Keywords: 多稳态,双层压杆,滞后阻尼,高刚度,砰击载荷
Multi-Stable
, Bilayered Column, Hysteresis Damping, High Stiffness, Slamming Load

Full-Text   Cite this paper   Add to My Lib

Abstract:

波浪砰击载荷易引起导管架平台整体和局部结构剧烈振动,导致结构疲劳损伤和设备失效。为使振动快速衰减,设计了一种多稳态钢质撑杆结构,其中内置双层压杆具备高刚度高阻尼特性。循环载荷下,双层压杆激励与响应发生反向,产生滞后阻尼。结合层合结构刚度等效和杆件稳定分析方法,理论计算了双层压杆多稳态跳变阈值,建立了典型结构参数与弯曲中性轴间的联系。而后讨论了承载和耗散特性的几何参数相关性。将新型撑杆引入导管架平台,数值模拟砰击载荷并分析导管架自由振动,耗散撑杆不改变导管架结构刚度的同时大大提高了动能转换效率。导管架振幅衰减系数近8倍于传统导管架结构。
The severe overall and local vibration of jacket platform are triggered by wave slamming load, resulting in structural fatigue damage and equipment failure. In order to reduce the vibration rapidly, a multi-stable bracing system was designed, in which the built-in bilayered column presented high stiffness and damping. The excitation and response of bilayered column created reverse under cyclic load, then inducing hysteresis damping. Based on the combination of stiffness equivalence of laminated structure and method of stability analysis, the multi-stable jump threshold was calculated theoretically, and the relation between typical structural parameters and bending neutral axis was established. Subsequently, the effect of geometrical parameters on bearing and dissipation characteristics was discussed. Finally, the slamming load was implemented numerically to jacket platform containing new braces. The results show that the kinetic energy conversion efficiency is greatly improved and the stiffness of jacket platform remains unchanged. The amplitude decay co-efficient is nearly 8 times of the traditional jacket structure.

References

[1]  Thomas, G., Davis, M., Holloway, D. and Roberts, T. (2008) The Vibratory Damping of Large High-Speed Catamarans. Marine Structures, 21, 1-22.
https://doi.org/10.1016/j.marstruc.2007.12.003
[2]  郭芳, 刘屿, 赵志甲, 罗飞, 邬依林. 耦合内流动力学的海洋柔性立管振动控制[J]. 振动与冲击, 2017, 36(21): 157-162.
[3]  杨俊, 王刚伟, 田佳彬, 刘正林. 船舶推进轴系振动控制研究[J]. 振动与冲击, 2020, 39(10): 63-67.
[4]  Kandasamy, R., Cui, F., Townsend, N., et al. (2016) A Review of Vibration Control Methods for Marine Offshore Structures. Ocean Engineer-ing, 127, 279-297.
https://doi.org/10.1016/j.oceaneng.2016.10.001
[5]  王民, 李凤蛟, 昝涛, 高相胜. 基于多重调谐质量阻尼器的滚珠丝杠副横向振动控制[J]. 振动与冲击, 2015, 34(10): 63-67.
[6]  倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1990.
[7]  Lakes, R. (2009) Viscoelastic Materials. Cambridge University Press, Cam-bridge.
[8]  李景传, 梁立红, 刘小明. 金属/环氧/金属粘结体系的强韧和失效机制实验研究[J]. 力学学报, 2017, 49(6): 1213-1222.
[9]  ABAQUS 6.14. Analysis User’s Manual. http://130.149.89.49:2080/v6.14/index.html
[10]  Timoshenko, S. and Gere, J. (1963) Theory of Elastic Stability. McGraw-Hill, New York.
[11]  Barbarino, S., Pontecorvo, M. and Gandhi, F. (2012) Energy Dissipation of a Bi-Stable von Mises Truss under Harmonic Excitation. Proceedings of 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, Massachusetts, April 8-11 2013.
https://doi.org/10.2514/6.2013-1794
[12]  Chuang, T. and Lee, S. (2000) Elastic Flexure of Bilayered Beams Sub-ject to Strain Differentials. Journal of Materials Research, 15, 2780-2788.
https://doi.org/10.1557/JMR.2000.0397
[13]  周绪红. 结构稳定理论[M]. 北京: 高等教育出版社, 2010.
[14]  Sruthi, C. and Sriram, V. (2017) Wave Shock Load on Jacket Structure in Intermediate Water Depth. Ocean Engineering, 140, 183-194.
https://doi.org/10.1016/j.oceaneng.2017.05.023

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413