全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

悬臂、四边固支板及低频隔振体系压电振动控制研究
Research on Piezoelectric Vibration Control of Cantilever, Four-Side Fixed Plate and Low-Frequency Vibration Isolation System

DOI: 10.12677/OJAV.2023.111004, PP. 31-38

Keywords: 悬臂板,四边固支板,低频隔振体系,压电振动控制
Cantilever Plate
, Four-Side Fixed Plate, Low Frequency Vibration Isolation System, Piezoelectric Vibration Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

对悬臂板、四边固支板及低频隔振系统开展了较为系统的压电振动控制研究,并在有限元环境,进行了压电控制电压的输入设计。数值计算结果表明,压电振动控制效果显著,验证了所提压电振动控制方法的有效性。本研究对于工程结构的压电振动控制具有指导意义,对于气浮振动控制等低频隔振系统开展压电主动控制,具有重要的实际工程应用价值。
The piezoelectric vibration control of cantilever plate, four-side fixed plate and low-frequency vibration isolation system was systematically studied in this paper, and the voltage input design of piezoelectric control was carried out using finite element method. The numerical results showed that the piezoelectric vibration control effect was significant, and the effectiveness of the proposed piezoelectric vibration control strategy was verified. This research has guiding significance for the piezoelectric vibration control of engineering structures, and has important practical engineering application value for the piezoelectric active vibration control of low-frequency vibration isolation systems such as air floating vibration control.

References

[1]  Pai, P.F., Wen, B., Naser, A.S., et al. (1998) Structural Vibration Control Using PZT Patches and Non-Linear Phenom-ena. Journal of Sound and vibration, 215, 273-296.
https://doi.org/10.1006/jsvi.1998.1612
[2]  Ma, K. (2003) Vi-bration Control of Smart Structures with Bonded PZT Patches: Novel Adaptive Filtering Algorithm and Hybrid Control Scheme. Smart Materials and Structures, 12, Article No. 473.
https://doi.org/10.1088/0964-1726/12/3/319
[3]  Gurses, K., Buckham, B.J. and Park, E.J. (2009) Vibration Con-trol of a Single-Link Flexible Manipulator Using an Array of Fiber Optic Curvature Sensors and PZT Actuators. Mecha-tronics, 19, 167-177.
https://doi.org/10.1016/j.mechatronics.2008.09.005
[4]  Shen, Y. and Homaifar, A. (2001) Vibration Control of flexible Structures with PZT Sensors and Actuators. Journal of Vibration and Control, 7, 417-451.
https://doi.org/10.1177/107754630100700306
[5]  Bailey, T. and Hubbard Jr., J.E. (1985) Distributed Piezoelec-tric-Polymer Active Vibration Control of a Cantilever Beam. Journal of Guidance, Control, and Dynamics, 8, 605-611.
https://doi.org/10.2514/3.20029
[6]  Sosso, B., da Silva Andrade, S., Vieira Jr., L.C.M., et al. (2020) Probabilistic Modelling of the Robustness of Reinforced Concrete Frames Accounting for Material Property Variability Using a Lay-ered Beam Finite Element Approach. Engineering Failure Analysis, 118, 104789.
https://doi.org/10.1016/j.engfailanal.2020.104789
[7]  Ruocco, E., Reddy, J.N. and Sacco, E. (2021) Analytical Solution for a 5-Parameter Beam Displacement Model. International Journal of Mechanical Sciences, 201, 106496.
https://doi.org/10.1016/j.ijmecsci.2021.106496
[8]  Wu, D., Liu, A., Huang, Y., et al. (2018) Dynamic Analysis of Functionally Graded Porous Structures through Finite Element Analysis. Engineering Structures, 165, 287-301.
https://doi.org/10.1016/j.engstruct.2018.03.023
[9]  Lim, Y.H. (2003) Finite-Element Simulation of Closed Loop Vibration Control of a Smart Plate under Transient Loading. Smart Materials and Structures, 12, Article No. 272.
https://doi.org/10.1088/0964-1726/12/2/316
[10]  Karagülle, H., Malgaca, L. and ?ktem, H.F. (2004) Analysis of Active Vibration Control in Smart Structures by ANSYS. Smart materials and Structures, 13, Article No. 661.
https://doi.org/10.1088/0964-1726/13/4/003

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413