全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

原位生长与非原位生长的α-Fe2O3纳米阵列制备及气敏特性研究
Preparation and Gas-Sensitive Properties of α-Fe2O3 Nano-Arrays Grown in Situ and Non-Situ

DOI: 10.12677/OE.2023.131004, PP. 29-35

Keywords: 原位生长,纳米阵列,氧化铁
In Situ Growth
, Nano-Array, Iron Oxide

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要采用水热法,用无水氯化铁和无水硫酸钠制备出在陶瓷管基底上原位生长的α-Fe2O3纳米棒阵列和无基底非原位生长的α-Fe2O3粉末纳米棒。利用扫描电子显微镜、X射线衍射、X射线光电子能谱镜等方法对制备所得的α-Fe2O3材料进行了形貌、元素组成等表征。通过气敏测试结果,表明原位生长气敏特性灵敏度值要高于非原位生长非原位生长,且都对丙酮气体具有最好的气敏特性,响应恢复时间短,稳定性好。说明原位生长的α-Fe2O3纳米阵列整齐有序,可提高材料气敏特性。
In this paper, α-Fe2O3 nanorods arrays grown in situ on ceramic tube substrate and α-Fe2O3 powder nanorods grown in situ without substrate were prepared by hydrothermal method using anhydrous ferric chloride and anhydrous sodium nitrate. The morphology and elemental composition of α-Fe2O3 materials were characterized by scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The gas-sensitive test results show that the sensitivity value of in situ growth is higher than that of non-in situ growth and non-in situ growth, and both have the best gas-sensitive characteristics to acetone gas, short response recovery time and good stability. These results indicate that the α-Fe2O3 nanoarrays grown in situ are orderly and can improve the gas-sensitive properties of the materials.

References

[1]  Güniat, L., Caroff, P., Fontcuberta, I. and Morral, A. (2019) Vapor Phase Growth of Semiconductor Nanowires: Key Devel-opments and Open Questions. Chemical Reviews, 119, 8958-8971.
https://doi.org/10.1021/acs.chemrev.8b00649
[2]  LaPierre, R.R., Robson, M., Azizur-Rahman, K.M. and Kuyanov, P. (2017) A Review of III-V Nanowire Infrared Photodetectors and Sensors. Journal of Physics D: Applied Physics, 50, Article ID: 123001.
https://doi.org/10.1088/1361-6463/aa5ab3
[3]  Lin, S.Y., Chow, E., Hietala, V., Villeneuve, P.R. and Joannopoulos, J.D. (1998) Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal. Science, 282, 274-276.
https://doi.org/10.1126/science.282.5387.274
[4]  Fan, Z., Kapadia, R., Leu, P.W., Zhang, X., Chueh, Y.-L., Takei, K., Yu, K., Jamshidi, A., Rathore, A.A. and Ruebusch, D.J. (2010) Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption. Nano Letters, 10, 3823-3827.
https://doi.org/10.1021/nl1010788
[5]  Demontis, V., Marini, A., Floris, F., Sorba, L. and Rossella, F. (2020) Engineering the Optical Reflectance of Randomly Arranged Self-Assembled Semiconductor Nanowires. AIP Conference Proceedings, 2257, Article ID: 020009.
https://doi.org/10.1063/5.0023675
[6]  Larrieu, G. and Han, X.L. (2013) Vertical Nanowire Array-Based Field Effect Transistors for Ultimate Scaling. Nanoscale, 5, 2437.
https://doi.org/10.1039/c3nr33738c
[7]  Thelander, C., Agarwal, P., Brongersma, S., Eymery, J., Feiner, L.F., Forchel, A., Scheffler, M., Riess, W., Ohlsson, B.J., Goesele, U., et al. (2006) Nanowire-Based One-Dimensional Electronics. Materials Today, 9, 28-35.
https://doi.org/10.1016/S1369-7021(06)71651-0
[8]  Chandra, N., Tracy, C.J., Cho, J.H., Picraux, S.T., Hathwar, R. and Goodnick, S.M. (2015) Vertically Grown Ge Nanowire Schottky Diodes on Si and Ge Substrates. Journal of Applied Physics, 118, Article ID: 024301.
https://doi.org/10.1063/1.4923407
[9]  Garnett, E. and Yang, P. (2010) Light Trapping in Silicon Nanowire Solar Cells. Nano Letters, 10, 1082-1087.
https://doi.org/10.1021/nl100161z
[10]  Goktas, N.I., Wilson, P., Ghukasyan, D., Wagner, D., McNamee, S. and LaPierre, R.R. (2018) Nanowires for Energy: A Review. Applied Physics Reviews, 5, Article ID: 041305.
https://doi.org/10.1063/1.5054842
[11]  Kelzenberg, M., Boettcher, S., Petykiewicz, J., Turner-Evans, D.B., Putnam, M.C., Warren, E.L., Spurgeon, J.M., Briggs, R.M., Lewis, N.S. and Atwater, H.A. (2010) Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications. Nature Materials, 9, 239-244.
https://doi.org/10.1038/nmat2635
[12]  Gibson, S.J., van Kasteren, B., Tekcan, B., Cui, Y., van Dam, D., Haverkort, J.E.M., Bakkers, E.P.A.M. and Reimer, M.E. (2019) Tapered InP Nanowire Arrays for Efficient Broadband High-Speed Single-Photon Detection. Nature Nanotechnology, 14, 473-479.
https://doi.org/10.1038/s41565-019-0393-2
[13]  Kim, H., Lee, W., Farrell, A.C., Morales, J.S.D., Senanayake, P., Prikhodko, S.V., Ochalski, T.J. and Huffaker, D.L. (2017) Monolithic InGaAs Nanowire Array Lasers on Silicon-on-Insulator Operating at Room Temperature. Nano Letters, 17, 3465-3470.
https://doi.org/10.1021/acs.nanolett.7b00384
[14]  Yan, R., Gargas, D. and Yang, P. (2009) Nanowire Photonics. Nature Photonics, 3, 569-576.
https://doi.org/10.1038/nphoton.2009.184
[15]  Liao, Y.L. and Zhao, Y. (2020) Ultra-Narrowband Dielectric Metamaterial Absorber with Ultra-Sparse Nanowire Grids for Sensing Applications. Scientific Reports, 10, 1480.
https://doi.org/10.1038/s41598-020-58456-y
[16]  Patolsky, F. and Lieber, C.M. (2005) Nanowire Nanosensors. Materials Today, 8, 20-28.
https://doi.org/10.1016/S1369-7021(05)00791-1
[17]  Offermans, P., Crego-Calama, M. and Brongersma, S.K. (2010) Gas Detection with Vertical InAs Nanowire Arrays. Nano Letters, 10, 2412-2415.
https://doi.org/10.1021/nl1005405
[18]  Elnathan, R., Kwiat, M., Patolsky, F. and Voelcker, N.H. (2014) Engineering Vertically Aligned Semiconductor Nanowire Arrays for Applications in the Life Sciences. Nano Today, 9, 172-196.
https://doi.org/10.1016/j.nantod.2014.04.001

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133