|
Optoelectronics 2023
全固态窄脉冲523.5 nm微型激光器的研究
|
Abstract:
本文介绍了微型LD端面泵浦的窄脉冲Nd:YLF激光器。采用透过率为70%的Cr:YAG晶体作为被动调Q晶体,在泵浦功率为5 W,1.33 kHz的重复频率下,得到脉冲能量150 μJ的1047 nm基频光输出,再通过LBO腔外倍频,最终实现脉宽为2 ns,脉冲能量为67.7 μJ的523.5 nm脉冲激光输出。
This paper introduces a miniature LD end-pumped narrow pulse Nd:YLF laser. Using Cr:YAG crystal with 70% transmittance as passive Q-switched crystal, the pulse energy of 150 is obtained at the repetition frequency of 1.33 kHz with a pump power of 5 W μ J’s 1047 nm fundamental frequency light output, and then through LBO external frequency doubling, the final pulse width is 2 ns, and the pulse energy is 67.7 μ J’s 523.5 nm pulsed laser output has the advantages of high beam quality, high peak power, high repetition rate, narrow pulse, simple and compact.
[1] | 王旭, 程光华, 等. LD泵浦被动调QYb:YAG薄片激光器实验研究[J]. 光子学报, 2016, 45(3): 1-5. |
[2] | Corkum, P.B., Brunel, F. and Sherman, N.K. (1998) Thermal Response of Metals to Ultrashort Pulse Laser Excitation. Physical Review Letters, 61, 2286-2289. |
[3] | Abbas, H.S., Kren, C., Danicke, V., et al. (2020) Modeling and Temperature Control of Retinal Laser Therapy. IFAC-Papers Online, 53, 16451-16456. https://doi.org/10.1016/j.ifacol.2020.12.733 |
[4] | 霍玉晶, 张沁馨, 等. LD泵浦的Nd:YLF激光器及倍频激光器[J]. 激光与红外, 1992, 22(3): 37-40. |
[5] | Li, D.J., Ma, Z., et al. (2008) Diode-End-Pumped Double Nd:YLF Slab Laser with High Energy, Short Pulse Width, and Diffraction-Limited Quality. Optics Letters, 33, 1708-1710. https://doi.org/10.1364/OL.33.001708 |
[6] | Yang, Q., Zhu, X.L., et al. (2015) High Energy 523nm Nd:YLF Pulsed Slab Laser with Novel Pump Beam Waveguide Design. Optics Communications, 354, 414-418. https://doi.org/10.1016/j.optcom.2015.06.022 |
[7] | 郭秀明, 朱晓磊, 等. LD抽运的Nd:YLF/Cr4+:YAG被动调Q激光器[J]. 激光与红外, 2006, 36(7): 534-536. |
[8] | 刘国宏. 全固态连续单频Nd:YLF激光器的研制[D]: [硕士学位论文]. 太原: 山西大学, 2009. |
[9] | 潘淑娣. Nd:YLF晶体特性及全固态激光器研究[D]: [硕士学位论文]. 济南: 山东师范大学, 2007. |
[10] | 巩马理, 翟刚, 时顺森, 等. Cr4+:YAG 可饱和吸收特性测量[J]. 光学学报, 1998, 18(1): 124-127. |
[11] | Smith, R. (1970) Theory of Intracavity Optical Second-Harmonic Generation. IEEE Journal of Quantum Electronics, 6, 215-223. https://doi.org/10.1109/JQE.1970.1076440 |
[12] | Abbas, B. (2007) Optimization of Intracavity Q-Switched Laser Frequency Doubling. Optics & Laser Technology, 39, 710-714. https://doi.org/10.1016/j.optlastec.2006.03.016 |