全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于BP神经网络的吉林省中学在校生规模预测研究
Prediction Research on the Scale of Middle School Students in Jilin Province Based on BP Neural Network

DOI: 10.12677/HJDM.2023.132010, PP. 99-106

Keywords: 在校生规模,神经网络,社会经济指标,Student Scale, Neural Network, Socio-Economic Indicators

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究基于2005~2019年吉林省统计年鉴中的社会经济指标,利用Bootstrap样本扩充技术对数据进行数据增广,尝试应用神经网络算法构建社会经济指标与中学在校生规模关系间的反演模型,并与多因素线性回归方法建立的模型精度进行比较,意图探究社会经济基本情况对中学在校生规模的影响并针对构建的预测模型进行验证。结果发现:1) 第三产业从业规模与在校生规模的相关性优于第一产业和第二产业。2) 预测模型中的因子数 ≥ 3时,任意三因子组合的预测精度 ≥ 0.94,认为三因素模型满足预测需求为最优状态。3) 基于神经网络的科学研究技术服务及地质勘查业、交通运输仓储及邮政业和教育从业规模对中学在校生规模的预测效果最好R2 = 0.94,RMSE = 3.98。最后根据研究发现的问题讨论形成的机制并提出具有针对性的建议。
Based on the social and economic indicators in Jilin Statistical Yearbook from 2005 to 2019, the Bootstrap sample expansion technique was used to augment the data, this study attempted to use neural network algorithm to construct the inversion model of the relationship between social and economic indicators and the size of middle school students, and compared the accuracy of the model with the multi-factor linear regression method. The purpose is to explore the influence of social and economic conditions on the size of middle school students and verify the prediction model. The results show that: 1) The correlation between the employment scale in the tertiary industry and the student scale is better than that in the primary industry and the secondary industry. 2) When the number of factors in the prediction model is greater than or equal to 3, the prediction accuracy of any three-factor combination is greater than or equal to 0.94, and it is considered that the three-factor model satisfies the prediction demand as the optimal state. 3) The scale of scientific research and technical service based on neural network, geological survey, transportation and storage, postal and educational employment has the best prediction effect on the scale of middle school students, R2 = 0.94, RMSE = 3.98. Finally, according to the problems found in the research, the mechanism of formation is discussed and the corresponding suggestions are put forward.

References

[1]  李晓筝. 民国时期初级中学地理教学理念的演变[J]. 地理教育, 2022(S1): 4-6.
[2]  郎益夫, 戴天虹. 基于神经网络的中国高等教育投资供给规模预测[J]. 哈尔滨工程大学学报, 2006, 27(4): 625-628.
[3]  于文波. 基于BP神经网络的辽宁高等教育投资规模预测[J]. 长春大学学报, 2009, 19(2): 20-22.
[4]  刘叔才, 尹平. 基于BP神经网络的研究生教育发展规模预测[J]. 中国社会医学杂志, 2008, 25(3): 132-134.
[5]  卢锐. 湖北省研究生教育规模预测的实证研究[D]: [硕士学位论文]. 武汉: 中南民族大学, 2011.
[6]  杨岑. 辽宁省研究生教育规模预测研究[D]: [硕士学位论文]. 沈阳: 东北大学, 2013.
[7]  晏富宗, 胡海青. 基于BP神经网络的区域高等教育规模预测研究——以江西省为例[J]. 教育学术月刊, 2013(12): 52-55+61.
https://doi.org/10.16477/j.cnki.issn1674-2311.2013.12.018
[8]  王宪莲, 安凤平. 基于权重初始化-多层卷积神经网络滑动窗口融合的高等教育办学规模预测算法[J]. 信息技术与信息化, 2019(10): 24-29.
[9]  耿立艳, 张占福. 基于RBF神经网络的高等教育规模预测[J]. 科教导刊(上旬刊), 2013(3): 38+73.
https://doi.org/10.16400/j.cnki.kjdks.2013.02.084
[10]  巩海霞. 教育投入的经济效应研究——基于江苏省的实证分析[D]: [博士学位论文]. 徐州: 中国矿业大学, 2009.
[11]  郭东阳. 学龄人口变动对义务教育资源配置的影响研究[D]: [博士学位论文]. 长春: 吉林大学, 2022.
https://doi.org/10.27162/d.cnki.gjlin.2022.007112
[12]  王清强, 乐传永, 刘双飞. 职业院校在校生规模与国民经济发展之间的系统耦合样态分析[J]. 职业技术教育, 2021, 42(36): 39-43.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133