全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大地主题问题常用幂级数的第三扁率展开
The Third Flattening Expansion of Power Se-ries Commonly Used in Geodetic Problem

DOI: 10.12677/GST.2023.112011, PP. 98-108

Keywords: 大地主题,第三扁率,幂级数展开式;Geodetic Problem, The Third Flattening, Power Series Expansion

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统方法大地主题问题解算用第一偏心率e和K为参数的幂级数展开收敛速度慢、形式复杂效率低下的问题,以第三扁率n代替以往参数将其级数展开式进行重新推导改化。结果表明,基于n的大地线问题幂级数展开式更为简洁,形式上更加简单,更加便于分析与应用;在中小距离的大地主题反解上,新的表达式精度最高达到0.0001 m,满足高精度的要求;在长距离大地主题反解上,对传统人工推导的结果进行了新的计算,依然保持精度相对一致性。同时结果发现:经过转换后,在保持了上述精度的同时,展开式从原来的10阶降到了3阶,形式上更为简单。与传统的贝塞尔大地反解问题相比,在长距离大地线的解算上也存在着一定优势。
In view of the problems of slow convergence and low efficiency of the power series expansion with the first flattening e and K as the parameters of the traditional method for solving the geodetic problem, the third flattening n was used to replace the previous parameters and the series expan-sion was reduced and modified. The results show that the power series expansion of the geodetic problem based on n is more concise, simpler in form, and more convenient for analysis and applica-tion. For the inverse solution of the earth theme in small and medium distance, the accuracy of the new expression is up to 0.0001 m, which meets the requirement of high precision. In the inverse solution of long distance geodetic theme, a new calculation is made to the result of traditional artifi-cial derivation, and the accuracy is still consistent. At the same time, it is found that after the con-version, while maintaining the above accuracy, the expansion formula is reduced from the original order 10 to the order 3, which is simpler in form. Compared with the traditional Bessel geodetic in-verse problem, it also has some advantages in the calculation of long distance geodetic line.

References

[1]  熊介. 椭球大地测量学[M]. 北京: 解放军出版社, 1988, 9(11): 18-23.
[2]  史国友, 周晓明, 贾传荧. 贝塞尔大地主题正解的改进算法[J]. 大连海事大学学报, 2008, 34(1): 15-19.
[3]  吴祖新, 郑中义. 大地线航法在智能船舶上的应用[J]. 舰船科学技术, 2023, 45(1): 180-185.
[4]  董箭, 李彬彬, 彭认灿, 等. 顾及拱高误差的墨卡托大地线快速展绘算法[J]. 测绘科学, 2020, 45(9): 43-51.
https://doi.org/10.16251/j.cnki.1009-2307.2020.09.008
[5]  Chang, S., Ji, B., Bian, S. and Li, H. (2021) Two Algorithms of Geodesic Line Length Calculation Considering Elevation. Journal of Latex Class Files, 14, 1-9.
[6]  李鑫, 姚德新, 金立新. 大地线极点归化纬度的迭代求解法[J]. 测绘工程, 2022, 31(6): 27-33.
https://doi.org/10.19349/j.cnki.issn1006-7949.2022.06.005
[7]  边少锋, 李厚朴. 大地测量计算机代数分析[M]. 北京: 科学出版社, 2018: 9-23, 38-42.
[8]  纪兵, 边少锋. 大地主题问题的非迭代新解[J]. 测绘学报, 2007(3): 269-273.
[9]  周江华, 苗育红, 成文生. 贝塞尔大地问题反解的改进算法[J]. 宇航学报, 2001, 22(2): 95-99.
[10]  周江华, 苗育红, 成文生, 孙国基. 贝塞尔大地反解问题的高效率算法[J]. 测绘学报, 2002(2): 108-111.
[11]  向新桃, 秦尧, 汤瑾璟. 适用于智能船的大地线主题计算模型及其应用[J]. 船舶设计通讯, 2019(2): 38-43.
[12]  Sj?eberg, L.E. (2007) Precise Determination of the Clairaut Constant in Ellipsoidal Geodesy. Survey Review, 39, 81-86.
https://doi.org/10.1179/003962607X165014
[13]  Baselga, S. and Martínez-Llario, J.C. (2017) Intersection and Point-to-Line Solutions for Geodesics on the Ellipsoid. Studia Geophysica et Geodaetica, 62, 353-363.
https://doi.org/10.1007/s11200-017-1020-z
[14]  Karney, C.F.F. (2011) Geodesics on an Ellipsoid of Revolution. (Pre-print)
[15]  李晓勇, 李厚朴, 刘国辉, 等. 等面积纬度函数与常用纬度间的直接变换[J]. 海洋测绘, 2022, 42(2): 78-82.
[16]  汪绍航, 边少锋, 金立新, 等. 椭球大地测量常用幂级数的第三扁率展开[J]. 测绘科学技术学报, 2021, 38(6): 571-578.
[17]  李晓勇, 李厚朴, 刘国辉, 等. 等面积纬度函数与常用纬度间的直接变换[J]. 海洋测绘, 2022, 42(2): 78-82.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413