全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

仿生超疏水微纳米结构的制备与分析
Preparation and Analysis of Bionic Super-Hydrophobic Microstructures and Nanostructures

DOI: 10.12677/CC.2023.71001, PP. 1-9

Keywords: 超疏水,仿生,荷叶,自清洁浸润性,纳米碳沉积–相分离法
Super Hydrophobic
, Bionics, Lotus Leaf, Self Cleaning Wettability, Nanocarbon Deposition Phase Separation Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

受超疏水低粘附荷叶启发,经过两次复型处理得到类荷叶表面微纳米结构,借助蜡烛灰纳米碳的沉积增强其表面微观结构,再利用绿色生物蜡修饰改变其表面化学组成,构筑具有超疏水低粘附自清洁表面。实验结果表明:制备的材料静态水滴接触角达到151.8?,滚动角约5?,展现出良好的“荷叶效应”;同时,制备所得的表面在酸碱盐等物质存在下有良好的耐腐蚀性,在进行水流冲击实验30 min后的情况下,依然保持着表面疏水性的稳定性。
Inspired by the super hydrophobic and low adhesion lotus leaf, the micro nano structure of lotus leaf like surface was obtained after twice replica treatment. The surface micro structure was en-hanced by the deposition of candle ash nano carbon, and then the chemical composition of its sur-face was modified by green biological wax to build a self-cleaning surface with super hydrophobic and low adhesion. The experimental results show that the static water drop contact angle of the prepared material reaches 151.8?, and the rolling angle is about 5?, showing a good “lotus leaf effect”. At the same time, the prepared surface has good corrosion resistance in the presence of acid, alkali, salt and other substances, and it still maintains the stability of surface hydrophobicity 30 minutes after the water impact test.

References

[1]  刘常瑜. 制备和表征超疏水木材[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2012.
[2]  王学武. 铝合金表面高粘滞力超疏水性薄膜的制备研究[D]: [硕士学位论文]. 天津: 天津大学, 2010.
[3]  贾静. 镁合金表面超疏水膜层的制备及性能研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2013.
[4]  王会杰. 超疏水功能界面的制备及应用[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2015.
[5]  王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料[J]. 物理学报, 2016, 65(18): 61-83.
[6]  屈孟男. 从自然到仿生: 超疏水材料制备方法研究[D]: [博士学位论文]. 兰州: 兰州大学, 2008.
[7]  李璇. 液滴等体积离散效应及其在流量传感上的应用[D]: [硕士学位论文]. 合肥: 中国科学技术大学, 2019.
[8]  刘金秋, 柏冲, 徐文华, 等. 高黏附性超疏水表面的研究进展[J]. 应用化学, 2013, 30(7): 733-739.
[9]  何双虎. 电化学法制备ZnO纳米结构及其性能研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2010.
[10]  林佳丽, 方昕, 林双妹. 生物体的特殊性能与其微观形貌的关系[J]. 自然杂志, 2013, 35(6): 451-457.
[11]  王鹏, 皮丕辉, 廖达, 等. 含POSS含氟杂化丙烯酸酯共聚物的制备及其涂膜疏水性[J]. 电镀与涂饰, 2015, 34(18): 1003-1008.
[12]  Yong, J., Chen, F., Yang, Q., et al. (2017) Superoleophobic Surfaces. Chemical Society Reviews, 46, 4168-4217.
https://doi.org/10.1039/C6CS00751A
[13]  Fang, R., Liu, M., Liu, H., et al. (2018) Bioinspired Interfacial Materials: From Binary Cooperative Complementary Interfaces to Superwettability Systems. Advanced Materials Interfaces, 5, 6-8.
https://doi.org/10.1002/admi.201701176
[14]  Koch, K., Bhushan, B., Jung, Y.C., et al. (2009) Fabrication of Arti-ficial Lotus Leaves and Significance of Hierarchical Structure for Superhydrophobicity and Low Adhesion. Soft Matter, 5, 1386-1393.
https://doi.org/10.1039/b818940d
[15]  Feng, L., Li, S., Li, Y., et al. (2002) Super-Hydrophobic Sur-faces: From Natural to Artificial. Advanced Materials, 14, 1857-1860.
https://doi.org/10.1002/adma.200290020
[16]  Wang, S., Liu, K., Yao, X., et al. (2015) Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chemical Reviews, 115, 8230-8293.
https://doi.org/10.1021/cr400083y
[17]  王强. 超疏水碳材料的制备及其性能研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2017.
[18]  钱志强, 葛飞, 刘海宁, 王世栋, 叶秀深, 宝阿敏. 一步水热法构筑镁合金超疏水表面及其性能研究[J]. 聊城大学学报(自然科学版), 2019, 32(1): 38-43.
https://doi.org/10.19728/j.issn1672-6634.2019.01.006
[19]  丁云飞, 伍彬, 吴会军. 基于模板热压法制备超疏水柱状结构表面[J]. 现代化工, 2014, 34(11): 65-68.
https://doi.org/10.16606/j.cnki.issn0253-4320.2014.11.033
[20]  王发鹏, 李松. 基于软印刷技术的竹材表面仿制荷叶超疏水结构[J]. 科技导报, 2016, 34(19): 101-104.
[21]  沈一洲, 汤文馨, 陶海军, 等. 喷砂-阳极氧化法构建分形超疏水Ti6Al4V表面及性能研究[J]. 功能材料, 2015, 46(19): 19033-19036.
[22]  张平平. 光固化复制模塑技术制备仿生含氟超疏水表面[D]: [硕士学位论文]. 北京: 北京化工大学, 2017.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413