This study focuses on the
adsorption at temperatures below 70℃, of carotenoids from carrots on clay materials such as
kaolinite in the raw state, activated with a 0.5M HCl solution or treated with a sodium solution of
Al+. The kinetic study of
carotenoid adsorption shows that equilibrium is reached after 30 minutes and
the temperature has little influence on carotenoid adsorption. On the other
hand, the quantities adsorbed at equilibrium increase with the initial
concentration of carotenoids. The kinetic model that best describes the
experimental data is that of the pseudo-second order, adsorption is made in two
time. For the carotenoid adsorption isotherms, the best correlation is obtained
with the Freundlich model. The low values of the Freundlich
constants indicate that the adsorption is probably of a physical type. This
conclusion is confirmed by the effective desorption of carotenoids observed
during desorption experiments.
Fofiri Nzossie Eric Joël (2012) Comment la connexion au marché modifie-t-elle la géographie de la production? L’exemple du corridor Ngaoundéré (Cameroun)—Moundou (Tchad). Forum du CSAO « Peuplement, marché et sécurité alimentaire » Ouagadougou (Burkina Faso).
[3]
Joda, B.A., Abed Al-Kadhim, Z.M., Ahmed, H.J. and Al-Khalaf, A.K.H. (2022) A Convenient Green Method to Synthesize β-Carotene from Edible Carrot and Nanoparticle Formation. Karbala International Journal of Modern Science, 8, Article No. 2. https://doi.org/10.33640/2405-609X.3200
[4]
Sant’Ana, P., Maria, H., Paulo CeÂsar, S., et al. (1998) Carotenoid Retention and Vitamin A Value in Carrot (Daucus carota L.) Prepared by Food Service. Food Chemistry, 61, 145-151. https://doi.org/10.1016/S0308-8146(97)00084-8
[5]
Wang, H.-W., Bringans, C., Hickey, A.J.R., Windsor, J.A., Kilmartin, P.A. and Phillips, A.R.J. (2021) Cyclic Voltammetry in Biological Samples: A Systematic Review of Methods and Techniques Applicable to Clinical Settings. Signals, 2, 138-158. https://doi.org/10.3390/signals2010012
[6]
Ensafi Ali, A., Taei, M. and Khayamian, T. (2009) A Differential Pulse Voltammetric Method for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid Using Poly(3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic Acid) Film Modified Glassy Carbon Electrode. Journal of Electroanalytical Chemistry, 633, 212-220. https://doi.org/10.1016/j.jelechem.2009.06.001
[7]
Carole, B. (2008) Etude électrochimique de molécules antioxydantes et de leur association en milieux homogène et biphasique—Application aux produits dermocosmétiques. Thèse de Doctorat à l’Université de Toulouse, Toulouse, 235p.
[8]
Liu, D.Z., Gao, Y.L. and Kispert, L.D. (2000) Electrochemical Properties of Natural Carotenoids. Journal of Electroanalytical Chemistry, 488, 140-150. https://doi.org/10.1016/S0022-0728(00)00205-9
[9]
Martin, H.D., Ruck, C., Schmidt, M., Sell, S., Beutner, S., Mayer, B. and Walsh, R. (1999) Chemistry of Carotenoid Oxidation and Free Radical Reactions. Pure and Applied Chemistry, 71, 2253-2262. https://doi.org/10.1351/pac199971122253
[10]
Baran, M., Miziak, P. and Bonio, K. (2020) Characteristics of Carotenoids and Their Use in the Cosmetics Industry. Journal of Education, Health and Sport, 10, 192-196. https://doi.org/10.12775/JEHS.2020.10.07.020
[11]
Carretero, I.M. and Pozo, M. (2010) Clay and Non-Clay Minerals in the Pharmaceutical and Cosmetic Industries Part II. Active Ingredients Applied Clay Science, 47, 171-181. https://doi.org/10.1016/j.clay.2009.10.016
[12]
Antille, C. (2007) Rétinoïdes et Caroténoïdes: Métabolisme dans la peau humaine après application topique et rôle dans la photoprotection. Thèse n°10510 présentée à la Faculté de Médecine de l’université de Genève, Genève, 45 p.
[13]
Terao, J. (1989) Antioxydant Activity of Bêta Carotene-Related Carotenoids in Solution. Lipids, 24, 659-661. https://doi.org/10.1007/BF02535085
[14]
Woodall, A.A., Britton, G. and Jackson, M.J. (1995) Antioxydant Activity of Carotenoids in Phosphatidylcholine Vesicles: Chemical and Structural Considerations. Biochemical Society Transactions, 23, 133S. https://doi.org/10.1042/bst023133s
[15]
Palozza, P., Moualla, S. and Krinsky, N.I. (1992) Effect of Bêta-Carotene and Alpha-Tocopherol on Radical-Initiated Peroxydation of Microsomes. Free Radicals in Biology and Medicine, 13, 127-136. https://doi.org/10.1016/0891-5849(92)90074-Q
[16]
Kusmita, L., Mutmainah, N., Sabdono, A., Trianto, A., Radjasa, O.K. and Pangestuti, R. (2021) Characteristic Evaluation of Various Formulations of Anti-Aging Cream from Carotenoid Extract of Bacterial Symbiont Virgibacillus salarius Strain 19.PP.Sc1.6. Cosmetics, 8, 120. https://doi.org/10.3390/cosmetics8040120
[17]
Burton, G.W. (1989) Antioxydant Action of Carotenoids. Journal of Nutrition, 119, 109-111. https://doi.org/10.1093/jn/119.1.109
[18]
Stocker, R., Yamamoto, Y., Mc Donagh, A.F., Glazer, A.N. and Ames, B.N. (1987) Bilirubin Is an Antioxydant of Possible Physiological Importance. Science, 235, 1043-1046. https://doi.org/10.1126/science.3029864
[19]
Krinsky, N.I. and Deneke, S.M. (1982) Interaction of Oxygen and Oxy-Radicals with Carotenoid. Journal of the National Cancer Institute, 69, 205-210.
[20]
Zhang, L., Conney, R.V. and Bertram, J.S. (1991) Carotenoids Enhance Gap Junctional Communication and Inhibit Lipid Peroydation in C3H/10T1/2 Cells: Relationship to Their Cancer Chemopreventive Action. Carcinogenesis, 12, 2109-2114. https://doi.org/10.1093/carcin/12.11.2109
[21]
Nguetnkam, J.P., Kamga, R., Villiéras, F., Ekodeck, G.E., Razafitianamaharavo, A. and Yvon, J. (2005) Assessment of the Surface Areas of Silica and Clay in Acid-Leached Clay Materials Using Concepts of Adsorption on Heterogeneous Surfaces. Journal of Colloid and Interface Science, 289, 104-115. https://doi.org/10.1016/j.jcis.2005.03.053
[22]
Sieffermann, G. (1985) Premières déterminations des minéraux argileux des sols du Cameroun. Institut de recherche scientifique du Cameroun. O.R.S.T.O.M. Fonds Documentaire n° 17531.
[23]
Massahiro et Mineyuki (2010) La vérité sur les cosmétiques: Ce qui est vraiment bon pourla peau et les cheuveux.
[24]
Ngomo Orléans, J.M., Sieliechi, J.B., Tchatchueng, R., Kamga, A., Tabacaru, R., Dinica, M. and Praisler (2014) Differences between Structural, Textural and Rheological Properties of Two Cameroonian Mineral Clays Used as Cosmetic Mask. The 2014 International Conference on Chemistry and Chemical Engineering (CCE 2014), Santorini, 17-21 July 2014, 425-431.
[25]
Thakre, D., Rayalu, S., Kawade, R., et al. (2010) Magnesium Incorporated Bentonite Clay for Defluoridation of Drinking Water. Journal of Hazardous Materials, 180, 122-130. https://doi.org/10.1016/j.jhazmat.2010.04.001
[26]
Taswin, M. and Mangunsong, S. (2020) How to Extract and Examine β-Carotene in Carrot (Daucus carota). Proceedings of the 1st International Conference on Health, Social Sciences and Technology (ICoHSST 2020), Palembang, 20-21 October 2020, 252-256.
[27]
Trémillon, B. (1993) Electrochimie analytique et reactions en solution, Tome 2. Masson, Paris.
[28]
Simić, A., Manojlović, D., Šegan, D. and Todorović, M. (2007) Electrochemical Behavior and Antioxidant and Prooxidant Activity of Natural Phenolics. Molecules, 12, 2327-2340. https://doi.org/10.3390/12102327
[29]
Tay-Agbozo, S. (2018) Characterization of the Carotenoid Cis-Bixin. The Degree of Doctor, The Graduate School of the University of Alabama, Tuscaloosa, 175 p.
[30]
Rodriguez-Amaya, D.B. (2001) A Guide to Carotenoid Analysis in Foods. International Life Sciences Institute, Washington DC.
[31]
Simona, M., Oprean, R., Mirel, V. and Săndulescu, R. (2008) Voltammetric Determination of Rutin in Pharmaceutical Dosage Forms. Farmacia, LVI, 196-203.
[32]
Pohndorf, R.S., Cadaval, T.R.S. and Pinto, L.A.A. (2016) Kinetics and Thermodynamics Adsorption of Carotenoids and Chlorophylls in Rice Bran Oil Bleaching. Journal of Food Engineering, 185, 9-16. https://doi.org/10.1016/j.jfoodeng.2016.03.028
[33]
Vidoca, L.P., de Almeida, E.S., Cardoso, M.F., et al. (2020) Extraction of Carotene from Crude Hybrid Palm Oil Using Polymeric Resin. Journal of Food Engineering, 278, Article ID: 109944. https://doi.org/10.1016/j.jfoodeng.2020.109944
[34]
Theng, B.K.G. and Wells, N. (1995) Assessing the Capacity of Some New Zealand Clays for Decolourizing Vegetable Oil and Butter. Applied Clay Science, 9, 321-326. https://doi.org/10.1016/0169-1317(94)00031-K
[35]
Novitasari, S., et al. (2021) Aluminum Pillared Clay (Al-PILC) for Adsorption of Dyes in Red Fruit Oil. Journal Kimia Sains dan Aplikasi, 24, 9-14. https://doi.org/10.14710/jksa.24.1.9-14
[36]
Maria, Y., Sutrisno, R.J., Hermanto, S., et al. (2020) Hydrophobic Cetyltrimethylammonium Bromide-Pillared Bentonite as an Effective Palm Oil Bleaching Agent. ACS (American Chemical Society) OmegA, 5, 28844-28855. https://doi.org/10.1021/acsomega.0c04238
[37]
Nga, J., Avom, J., Limbe, J.T., et al. (2022) Kinetics and Thermodynamics of β-Carotene Adsorption onto Acid-Activated Clays Modified by Zero Valent Iron. Journal of Chemistry, 2022, Article ID: 6505556. https://doi.org/10.1155/2022/6505556
[38]
Almeida, E.S., et al. (2019) Elucidating How Two Different Types of Bleaching Earths Widely Used in Vegetable Oils Industry Remove Carotenes from Palm Oil: Equilibrium, Kinetics and Thermodynamic Parameters. Food Research International, 121, 785-797. https://doi.org/10.1016/j.foodres.2018.12.061
[39]
Soto, M.L. (2011) Recovery, Conception and Purification of Phenolic Compounds by Adsorption. Journal of food Engineering, 105, 1-27. https://doi.org/10.1016/j.jfoodeng.2011.02.010
[40]
Ahmad, A.L., Chan, C.Y., Abd Shukor, S.R. and Mashitah, M.D. (2009) Adsorption Kinetics and Thermodynamics of β-Carotene on Silica-Based Adsorbent. Chemical Engineering Journal, 148, 378-384. https://doi.org/10.1016/j.cej.2008.09.011
[41]
Wu, F.-C., Tseng, R.-L., Huang, S.-C. and Juang, R.-S. (2009) Characteristics of Pseudo-Second-Order Kinetic Model for Liquid-Phase Adsorption: A Mini-Review. Chemical Engineering Journal, 151, 1-9. https://doi.org/10.1016/j.cej.2009.02.024
[42]
Mürüvvet, Y., Yolda, S., Karahan, S. and Yurdako, K. (2005) Kinetic and Thermodynamic Studies of Boron Removal by Siral 5, Siral 40, and Siral 80. Journal of Colloid and Interface Science, 286, 440-446. https://doi.org/10.1016/j.jcis.2004.12.047
[43]
Marie, K.J., Djangang, C.N., Tchanang, G., et al. (2022) Kinetic and Mechanism of the Adsorption of ß-Carotene Rich-Palm Oil onto Smectite Clay Activated by Fe(II) Lewis Acid Ion. International Journal of Chemistry, 1, 1-21. https://doi.org/10.47672/jchem.1284
[44]
Sabah, E., Inar, M.C. and Elik, M.S.C. (2007) Decolorization of Vegetable Oils: Adsorption Mechanism of β-Carotene on Acid-Activated Sepiolite. Food Chemistry, 100, 1661-1668. https://doi.org/10.1016/j.foodchem.2005.12.052
[45]
Chien-To, H. and Hsisheng, T. (2000) Langmuir and Dubinin-Raadushkevich Analyses on Equilibrium Adsorption of Activated Carbon Fabrics in Aqueous Solutions. Journal of Chemical Technology and Biotechnology, 75, 1066-1072. https://doi.org/10.1002/1097-4660(200011)75:11<1066::AID-JCTB321>3.0.CO;2-Z
[46]
Shu, H.T., Li, D., Scala, A.A. and Yi, Y.M. (1997) Adsorption of Small Organic Pollutants from Aqueous Streams by Aluminosilicate-Based Microporous Materials. Separation and Purification Technology, 11, 27-36. https://doi.org/10.1016/S1383-5866(96)01005-2
[47]
Weber, T.W. and Chakravo, R.K. (1974) Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AICHE Journal, 20, 228-238. https://doi.org/10.1002/aic.690200204
[48]
Srasra, E. and Trabelsi-Ayedi, M. (2000) Textural Properties of Acid Activated Glauconite. Applied Clay Science, 17, 71-84. https://doi.org/10.1016/S0169-1317(00)00008-9
[49]
Boivin, A., Cherrier, R. and Schiavon, M. (2005) A Comparison of Five Pesticides Adsorption and Desorption Processes in Thirteen Contrasting Field Soils. Chemosphere, 61, 668-676. https://doi.org/10.1016/j.chemosphere.2005.03.024
[50]
Zheng, H., Liu, D.H., Zheng, Y., Liang, S.P. and Liu, Z. (2009) Sorption Isotherm and Kinetic Modeling of Aniline on Cr-Bentonite. Journal of Hazardous Materials, 167, 141-147. https://doi.org/10.1016/j.jhazmat.2008.12.093