全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Increased Elongation at Breaking Point with Improved Mechanical Characteristics in PLA

DOI: 10.4236/ojcm.2023.132002, PP. 13-28

Keywords: Polylactic Acid, Biodegradable Thermoplastic Polyester, Elongation, Zeolite, Glycerol, Toughness Elongation, Thermal Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main goal of this research was to increase the strength of Polylactic acid (PLA), an entirely biodegradable thermoplastic polyester, and an increase in elongation at the breaking point compared to neat PLA. To this end, S1, S2, and S3 were melt blended with various percentages of Zeolite, Glycerol, White vinegar, green camphor, Eucalyptus, and Carom seed oils. Here, the addition of glycerol, eucalyptus, and carom seed oils demonstrated an average improvement in impact and tensile strength of 13.44% and 14.55% respectively. Zeolite and glycerol work together as binding agents to improve stress transfer in the matrix, which increases tensile and flexural modulus as well as toughness elongation (>10%). The addition of the aforementioned materials led to an increase in the glass transition temperature and melting temperature, according to further DSC investigation. The thermal stability increased gradually, according to TGA data.

References

[1]  Kim, I.H., Lee, S.C. and Jeong, Y.G. (2009) Tensile Behavior and Structural Evolution of Poly (Lactic Acid) Monofilaments in Glass Transition Region. Fibers and Polymers, 10, 687-693.
https://doi.org/10.1007/s12221-010-0687-6
[2]  Kim, S.Y., Shin, K.S., Lee, S.H., Kim, K.W. and Youn, J.R. (2010) Unique Crystallization Behavior of Multi-Walled Carbon Nanotube Filled Poly (Lactic Acid). Fibers and Polymers, 11, 1018-1023.
https://doi.org/10.1007/s12221-010-1018-4
[3]  Shi, Q., Chen, C., Gao, L., Jiao, L., Xu, H. and Guo, W. (2011) Physical and Degradation Properties of Binary or Ternary Blends Composed of Poly (Lactic Acid), Thermoplastic Starch and GMA Grafted POE. Polymer Degradation and Stability, 96, 175-182.
https://doi.org/10.1016/j.polymdegradstab.2010.10.002
[4]  Koo, G.H. and Jang, J. (2008) Surface Modification of Poly (Lactic Acid) by UV/ Ozone Irradiation. Fibers and Polymers, 9, 674-678.
https://doi.org/10.1007/s12221-008-0106-1
[5]  Groot, W.J. and Borén, T. (2010) Life Cycle Assessment of the Manufacture of Lactide and PLA Biopolymers from Sugarcane in Thailand. The International Journal of Life Cycle Assessment, 15, 970-984.
https://doi.org/10.1007/s11367-010-0225-y
[6]  Matsumoto, K. and Taguchi, S. (2010) Enzymatic and Whole-Cell Synthesis of Lactate-Containing Polyesters: Toward the Complete Biological Production of Polylactide. Applied Microbiology and Biotechnology, 85, 921-932.
https://doi.org/10.1007/s00253-009-2374-0
[7]  Lee, S.H. and Song, W.S. (2010) Enzymatic Hydrolysis of Polylactic acid Fiber. Applied Biochemistry and Biotechnology, 164, 89-102.
https://doi.org/10.1007/s12010-010-9117-7
[8]  Ljungberg, N. and Wesslén, B. (2005) Preparation and Properties of Plasticized Poly (Lactic Acid) Films. Biomacromolecules, 6, 1789-1796.
https://doi.org/10.1021/bm050098f
[9]  Salarbashi, D., Tajik, S., Shojaee-Aliabadi, S., Ghasemlou, M., Moayyed, H., Khaksar, R. and Noghabi, M.S. (2014) Development of New Active Packaging Film Made from a Soluble Soybean Polysaccharide Incorporated Zataria multiflora Boiss and Mentha pulegium Essential Oils. Food Chemistry, 146, 614-622.
https://doi.org/10.1016/j.foodchem.2013.09.014
[10]  Friesen, K., Chang, C. and Nickerson, M. (2015) Incorporation of Phenolic Compounds, Rutin and Epicatechin, into Soy Protein Isolate Films: Mechanical, Barrier and Cross-Linking Properties. Food Chemistry, 172, 18-23.
https://doi.org/10.1016/j.foodchem.2014.08.128
[11]  Giteru, S.G., Coorey, R., Bertolatti, D., Watkin, E., Johnson, S. and Fang, Z. (2015) Physico-chemical and Antimicrobial Properties of Citral and Quercetin Incorporated Kafirin-Based Bioactive Films. Food Chemistry, 168, 341-347.
https://doi.org/10.1016/j.foodchem.2014.07.077
[12]  Jamshidian, M., Tehrany, E.A., Cleymand, F., Leconte, S., Falher, T. and Desobry, S. (2012) Effects of Synthetic Phenolic Antioxidants on Physical, Structural, Mechanical and Barrier Properties of Poly Lactic Acid Film. Carbohydrate Polymers, 87, 1763-1773.
https://doi.org/10.1016/j.carbpol.2011.09.089
[13]  Conn, R.E., Kolstad, J.J., Borzelleca, J.F., Dixler, D.S., Filer, L.J., Ladu, B.N. and Pariza, M.W. (1995) Safety Assessment of Polylactide (PLA) for Use as a Food-Contact Polymer. Food and Chemistry Toxicology, 33, 273-283.
https://doi.org/10.1016/0278-6915(94)00145-E
[14]  Teixeira, B., Marques, A., Pires, C., Ramos, C., Batista, I., Saraiva, J.A. and Nunes, M.L. (2014) Characterization of Fish Protein Films Incorporated with Essential Oils of Clove, Garlic and Origanum: Physical, Antioxidant and Antibacterial Properties. LWT—Food Science and Technology, 59, 533-539.
https://doi.org/10.1016/j.lwt.2014.04.024
[15]  Kim, H.-S., Lee, B.-H., Kim, H.-J. and Yang, H.-S. (2011) Mechanical-Thermal Properties and VOC Emissions of Natural-Flour-Filled Biodegradable Polymer Hybrid Bio-Composites. Journal of Polymers and the Environment, 19, 628-636.
https://doi.org/10.1007/s10924-011-0313-5
[16]  Fernández, A., Soriano, E., Hernández-Muñoz, P. and Gavara, R. (2010) Migration of Antimicrobial Silver from Composites of Polylactide with Silver Zeolites. Journal of Food Science, 75, E186-E193.
https://doi.org/10.1111/j.1750-3841.2010.01549.x
[17]  Jiraroj, D., Tungasmita, S. and Tungasmita, D.N. (2014) Silver Ions and Silver Nanoparticles in Zeolite A Composites for Antibacterial Activity. Powder Technology, 264, 418-422.
https://doi.org/10.1016/j.powtec.2014.05.049
[18]  Baerlocher, C., McCusker, L.B. and Olson, D.H. (2007) Atlas of Zeolite Framework Types, 6th Edtion, Elsevier, Amsterdam.
[19]  Fonseca, A.M. and Neves, I.C. (2013) Study of Silver Species Stabilized in Different Microporous Zeolites. Microporous and Mesoporous Materials, 181, 83-87.
https://doi.org/10.1016/j.micromeso.2013.07.018
[20]  Audisio, G., Bertini, F., Beltrame, P.L. and Carniti, P. (1992) Catalytic Degradation of Polyolefins. Makromolekulare Chemie. Macromolecular Symposia, 57, 191-209.
https://doi.org/10.1002/masy.19920570117
[21]  Yuzay, I.E., Auras, R. and Selke, S. (2010) Poly (Lactic Acid) and Zeolite Composites Prepared by Melt Processing: Morphological and Physical—Mechanical Properties. Journal of Applied Polymer Science, 115, 2262-2270.
https://doi.org/10.1002/app.31322
[22]  Ciriminna, R., Pina, C.D., Rossi, M. and Pagliaro, M. (2014) Understanding the Glycerol Market. European Journal of Lipid Science and Technology, 116, 1432-1439.
https://doi.org/10.1002/ejlt.201400229
[23]  Behr, A., Eilting, J., Irawadi, K., Leschinski, J. and Lindner, F. (2008) Improved Utilisation of Renewable Resources: New Important Derivatives of Glycerol. ChemInform, 39.
https://doi.org/10.1002/chin.200823220
[24]  Agach, M., Delbaere, S., Marinkovic, S., Estrine, B. and Nardello-Rataj, V. (2012) Characterization, Stability and Ecotoxic Properties of Readily Biodegradable Branched Oligoesters Based on Bio-Sourced Succinic Acid and Glycerol. Polymer Degradation and Stability, 97, 1956-1963.
https://doi.org/10.1016/j.polymdegradstab.2012.03.026
[25]  Agach, M., Marinkovic, S., Estrine, B. and Nardello-Rataj, V. (2016) Acyl Poly (Glycerol-Succinic Acid) Oligoesters: Synthesis, Physicochemical and Functional Properties and Biodegradability. Journal of Surfactants and Detergents, 19, 933-941.
https://doi.org/10.1007/s11743-016-1853-4
[26]  Sarkar, A., Santra, S., Kundu, S.K., Hajra, A., Zyryanov, G.V., Chupakhin, O.N., Charushin, V.N. and Majee, A. (2016) A Decade Update on Solvent and Catalyst-Free Neat Organic Reactions: A Step Forward Towards Sustainability. Green Chemistry, 18, 4475-4525.
https://doi.org/10.1039/C6GC01279E
[27]  Tang, S.L.Y., Smith, R.L. and Poliakoff, M. (2005) Principles of Green Chemistry: Productively. Green Chemistry, 7, 761-762.
https://doi.org/10.1039/b513020b
[28]  Coativy, G., Misra, M. and Mohanty, A.K. (2016) Microwave Synthesis and Melt Blending of Glycerol Based Toughening Agent with Poly (Lactic Acid). ACS Sustainable Chemistry & Engineering, 4, 2142-2149.
https://doi.org/10.1021/acssuschemeng.5b01596
[29]  Henslee, A.M., Spicer, P.P., Yoon, D.M., Nair, M.B., Meretoja, V.V., Witherel, K.E., Jansen, J.A., Mikos, A.G. and Kasper, F.K. (2011) Biodegradable Composite Scaffolds Incorporating an Intramedullary Rod and Delivering Bone Morphogenetic Protein-2 for Stabilization and Bone Regeneration in Segmental Long Bone Defects. Acta Biomaterialia, 7, 3627-3637.
https://doi.org/10.1016/j.actbio.2011.06.043
[30]  Liang, X., Qi, Y., Pan, Z., He, Y., Liu, X., Cui, S. and Ding, J. (2018) Design and Preparation of Quasi-Spherical Salt Particles as Water-Soluble Porogens to Fabricate Hydrophobic Porous Scaffolds for Tissue Engineering and Tissue Regeneration. Materials Chemistry Frontiers, 2, 1539-1553.
https://doi.org/10.1039/C8QM00152A
[31]  O’Brien, F.J., Harley, B.A., Yannas, I.V. and Gibson, L. (2004) Influence of Freezing Rate on Pore Structure in Freeze-Dried Collagen-GAG Scaffolds. Biomaterials, 25, 1077-1086.
https://doi.org/10.1016/S0142-9612(03)00630-6
[32]  Hsu, S.H., Whu, S.W., Hsieh, S.C., Tsai, C.L., Chen, D.C. and Tan, T.S. (2004) Evaluation of Chitosan-Alginate-Hyaluronate Complexes Modified by an RGD-Containing Protein as Tissue-Engineering Scaffolds for Cartilage Regeneration. Artificial Organs, 28, 693-703.
https://doi.org/10.1111/j.1525-1594.2004.00046.x
[33]  Martin, D., Valdez, J., Boren, J. and Mayersohn, M. (2004) Dermal Absorption of Camphor, Menthol and Methyl Salicylate in Humans. The Journal of Clinical Pharmacology, 44, 1151-1157.
https://doi.org/10.1177/0091270004268409
[34]  Divya, K., Vijayan, S., George, T.K. and Jisha, M.S. (2017) Antimicrobial Properties of Chitosan Nanoparticles: Mode of Action and Factors Affecting Activity. Fibers and Polymers, 18, 221-230.
https://doi.org/10.1007/s12221-017-6690-1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133