全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimation of Thermodynamic Parameters for Better Conservation of Fresh Tomato (Lycopersicum esculentum)

DOI: 10.4236/aces.2023.132012, PP. 149-171

Keywords: Tomato, Isotherms, Theoretical Trend Model, Thermodynamic Properties, Heat of Sorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

Knowledge of the state of water balance of agro-food products is an essential step in drying or storage operations for preservation. Our study made it possible to determine the thermodynamic parameters which influence the storage conditions of fresh tomatoes grown in the south of Benin; and to predict its hygroscopic behavior during post-harvest storage. The desorption isotherms obtained at 40, 50 and 60, by the static gravimetric method using saturated saline solutions, are compared with those of the theoretical models of Brunauer, Emmet and Teller (BET), SMITH, PELEG and Guggenheim-Anderson-Boer (GAB). An adjustment of the experimental points, on the theoretical models, was made thanks to the numerical method which exploits the fminsearch algorithm under the MATLAB software, version R2018a. The GAB model at 50 faithfully reproduces the experimental desorption curves for water activities from 5.5% to 82.3%. The net isosteric heat of sorption was determined using the Clausius-Clapeyron equation, it increases when the degree of dehydration of the product increases. The applied isokinetic theory and enthalpy-entropy compensation are consistent.

References

[1]  Willy, L.S., Plamedi, M.M., Clément, M.K. and Santos, K. (2022) Proportion of Local and Imported Fresh Fish in the Markets of Kinshasa in the Democratic Republic of Congo (Case of the Markets of Freedom of Masina and Central of Kinshasa). Journal of Applied Biosciences, 141, 14353-14363.
[2]  Swana, W.L., Munggongo, P.M., Nzadimwena, L.K., Kilingwa, C.M., Mutanda, S.K. and Kiamfu, V.P. (2019) Proportion of Sale of Local Fresh Fish and Imported into the Kinshasa Markets in the Congo (Case of the Kinshasa Liberty and Central Markets). Journal of Applied BioSciences, 141, 14353-14363
[3]  FAO (2016) The World Situation of Peaches and Aquaculture. Contributing to Food Security and Nutrition of All. Rome Italy, p. 200.
[4]  MAEP (2017) Strategic Plan for the Agricultural Sector Development (PSDSA) 2025 and National Agricultural Investment and Food and Nutritional Investment Plan PNIASAN 2017-2021, 131.
[5]  Celma, R.A., Delgado, T.M., Garcia, H.C., Blazquez, C. and Lopez-Rodriguez, F. (2009) Characterisation of Industrial Tomato by-Products from Infrared Drying Priocess. Food and Bioproducts Processing, 87, 282-291.
https://doi.org/10.1016/j.fbp.2008.12.003
[6]  Clinton, S.K. (1998) Lycopene: Chemistry, Biology, and Implications for Human Health and Disease. Nutrition Reviews, 56, 35-51.
https://doi.org/10.1111/j.1753-4887.1998.tb01691.x
[7]  Syndoux, D., N’Dri, E.K., Ibrahima, C., Amissa, A.A., Koffi, Y. and Atchibri, A.L. (2019) Nutritional Composition and Antioxidant Capacity of Four Varieties of Tomato (Lycopersicon Esculentum Mill) Cultivated in Côte d’Ivoire. International Journal of Innovation and Applied Studies, 26, 915-925
[8]  Mensah, A.C.G., Assogba, K.F., Azagba, D.A.J., Ogoutolou, O.R.O. and Lucien, A.G. (2019) Effet du fractionnement d’engrais organique, d’Urée et du sulfate de potassium sur la productivité et la conservation de la tomate au Sud du Bénin. Journal of Applied Bioscience, 138, 14050-14059.
https://doi.org/10.4314/jab.v138i1.5
[9]  DPP/MAEP (2008) Annuaire statistique des productions agricoles. Ministère de l’Agriculture, de l’Elevage et de la Pêche. République du Bénin.
[10]  FAO (2011) Global Food Losses and Food Waste. Study Conducted for the International Congress, Germany.
[11]  Goudjinou, C., Ahouannou, C., Chaffa, G. and Soumanou, M.M. (2017) Thermophysical Characterization of the Powder Resulting from the Solar Drying of the Moringa oleifera Leaves. International Journal of Engineering, Science and Technology, 9, 28-47.
https://doi.org/10.4314/ijest.v9i4.4
[12]  Goudjinou, C. (2018) Theoretical and Experimental Study of Solar Drying of Moringa oleifera Leaves (Lam.): Place of the Place, Thermophysical, Physico-Chemical and Functional Characterization of Derived Powder. Doctoral Thesis, University of Abomey Calavi, Abomey-Calavi, 175.
[13]  Labuza, T.P., Kaane, A. and Chen, J.Y. (1985) Effect of Temperature on the Moisture Sorption Isotherms and Water Activity Shift of Two Dehydrated Foods. Journal of Food Science, 50, 385-391.
https://doi.org/10.1111/j.1365-2621.1985.tb13409.x
[14]  Ahouannou, C., Jannot, Y., Sanya, E. and Degan, G. (2010) Experimental Determination and Modeling of the Desorption Isotherms of Tropical Agricultural Products. Africa Science, 6, 1-17.
[15]  Brunauer, S., Emmet, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, 309-319.
https://doi.org/10.1021/ja01269a023
[16]  Smith, S.E. (1947) The Sorption of Water Vapor by High Polymers. Journal of the American Chemical Society, 69, 646-657.
https://doi.org/10.1021/ja01195a053
[17]  Peleg, M. (1992) Assessment of a Semi-Empirical Four Parameter General Model for Sigmoid Moisture Sorption Isothems. Journal of Food Process Engineering, 16, 21-27.
https://doi.org/10.1111/j.1745-4530.1993.tb00160.x
[18]  Cazzaniga, A., Marcela, B.M. and Andres, L.R. (2022) Evaluation of Sorption Isotherms in Snacks with Pregelatinized Cassava. Repositorio Español de Ciencia y Tecnología, 38, 28-35.
https://doi.org/10.36995/j.recyt.2022.38.004
[19]  Akoy, E., von Hörsten, D. and Ismail, M. (2013) Moisture Adsorption Characteristics of Solar-Dried Mango Slices. International Food Research Journal, 20, 883-890.
[20]  Timmermann, E.O. (2003) Multilayer Sorption Parameters: BET or GAB Values? Colloids and Surfaces A: Physicochemical and Engineering Aspects, 220, 235-260.
https://doi.org/10.1016/S0927-7757(03)00059-1
[21]  Salgado, M.C. (1994) Modeling of Activity and Enthalpy of Sorption in Cassava Chips. Drying Technology, 12, 1743-1752.
https://doi.org/10.1080/07373939408962197
[22]  Bidias, J.B., Mouthe Anombogo, G.A., Ndjeumi, C.C., Djomdi, T.G.B. and Nsouandele, J.L. (2022) Study of Water Desorption Isotherms from Cocoa Beans (Theobroma Cacao L.) of Cameroon. European Scientific Journal, 18, 1.
https://doi.org/10.19044/esj.2022.v18n11p1
[23]  Iglesias, H.A. and Chirife, J. (1976) On the Local Insotherm Concept and Mode of Moisture Bindings in Food Products. Journal of Agriculture and Food Chemistry, 24, 1342-1353.
https://doi.org/10.1021/jf60203a048
[24]  Kiranoudis, C.T., Maroulis, Z.B., Tsami, E. and Marinos-Kouris, D. (1993) Equilibrium Moisture Content and Heat of Desorption of Some Vegetables. Journal of Food Engineering, 20, 55-74.
https://doi.org/10.1016/0260-8774(93)90019-G
[25]  Adebowale, A.A., Akinniyi, G., Shittu, T.A., Adegoke, A.F., Omohimi, C.I., Sobukola, O.P., Onabanjo, O.O., Adegunwa, M.O., Kajihausa, O.E., Dairo, O.U., Abdulsalam-Saghir, P., Sanni, L.O., Siwoku, B.O. and Okoruwa, A.E. (2022) Adsorption Isotherms and Thermodynamic Properties of Dried Tomato Slices. Advances in Nutrition & Food Science, 7, 249-262.
https://doi.org/10.33140/ANFS.07.03.01
[26]  Tsami, E., Maroulis, Z.B., Morunos-Kouris, D. and Saravacos, G.D. (1990) Heat of Sorption of Water in Dried Fruits. International Journal of Food Science & Technology, 25, 350-359.
https://doi.org/10.1111/j.1365-2621.1990.tb01092.x
[27]  Giraldo, G.C.E., Gloria, I., Orrego-Alzate, L.M., Grajales, V.N., Telis, A.l., Gabas, J. and Telis, R. (2011) Effect of Drying Methods on the Thermodynamic Properties of Blackberry. Sistema de Infomación Científica, 78, 139-148.
[28]  Krug, R.R., Hunter, W.G. and Grieger, R.A. (1976) Enthalpy-Entropy Compensation Some Fundamental Statistical Problems Associated with the Analysis of Van’t Hoff and Arrhenius Date. Journal of Physical and Chemistry, 80, 2335-2341.
https://doi.org/10.1021/j100562a006
[29]  Omole, A.R., Enujughia, N.V. and Famurewa, J.A.V. (2019) Moisture Sorption Isotherm Study on Breadfruit (Artocarpus altilis) Flour. Annals. Food Science and Technology, 20, 654-661.
[30]  Madamba, P.S., Driscoll, H.R. and Buckle, K.A. (1996) Enthalpy-Entropy Compensation Models for Sorption and Browning of Garlic. Journal of Food Engineering, 28, 109-119.
https://doi.org/10.1016/0260-8774(94)00072-7
[31]  Shittu, T.A., Idowu-Adebayo, F., Adedokun, I.I. and Alade, O. (2015) Water Vapor Adsorption Characteristics of Starch Albumen Powder and Rheological Behavior of Its Paste. Nigerian Food Journal, 33, 90-96.
https://doi.org/10.1016/j.nifoj.2015.04.014
[32]  Goula, A.M.G., Karapantsios T.D., Achilias, D.S. and Adamopoulos, K.G. (2008) Toilets. Sorption Isotherms and Glass Transition Temperature of Spray Dried Tomato Pulp. Journal of Food Engineering, 85, 73-83.
https://doi.org/10.1016/j.jfoodeng.2007.07.015
[33]  Ahouannou, C., Jannot, Y., Lips, B. and Lallemand, A. (2000) Characterization and Modelization of Drying of Tree Tropical Products: Cassava, Gingembre and Gombo. Food Science, 20, 413-432.
https://doi.org/10.3166/sda.20.413-432
[34]  Durakova, A., Vasileva, A. and Choroleeva, K. (2021) Sorption Characteristics of Ready-Made Mixtures Containing Oatflakes, Apples, and Cinnamon. 10th International Conference on Thermal Equipments, Renewable Energy and Rural Development, Vol. 286, Bucharest, 10-12 June 2021, Article 03003.
https://doi.org/10.1051/e3sconf/202128603003
[35]  Al-Muhtaseb, A.H., McMinn, W.A.M. and Magee, T.R.A. (2004) Water Sorption Isotherms of Starch Power. Mathematical Description of Experimental Data. Journal of Food Engineering, 61, 297-307.
https://doi.org/10.1016/S0260-8774(03)00133-X
[36]  Ahouannou, C., Jannot, Y., Sanya, E. and Degan, G. (2010) Détermination expérimentale et modélisation des isothermes de désorption de produits agricoles tropicaux. Afrique Science, 6, 1-17.
[37]  Benseddik, A., Azzi, A. and Allaf, K.A. (2014) Modélisation des isothermes de désorption de la citrouille en vue de leur séchage solaire. Revue des Energies Renouvelables, SIENR 14 Ghardaia, 173-182.
[38]  Gabas, A.L., Telis, V.R.N., Sobral, P. and Telis, R.J. (2007) Effect of Maltodextrin and Arabic Gum in toilets Vapor Sorption Thermodynamic Properties of Vacuum Dried Pineapple Pulp Powder. Journal of Food Engineering, 82, 246-252.
https://doi.org/10.1016/j.jfoodeng.2007.02.029
[39]  HO, Y.S., Chiu, W.T. and Wang, C.C. (2005) Regression Analysis for the Sorption Isotherms of Basic Dyes on Sugarcane Dust. Bioresource Technology, 96, 1285-1291.
https://doi.org/10.1016/j.biortech.2004.10.021
[40]  Singh, K.P., Mishra, H.N. and Saha, S. (2011) Sorption Isotherms of Barnyard Millet Grain and Kernel. Food and Bioprocess Technology, 4, 788-796.
https://doi.org/10.1007/s11947-009-0195-x
[41]  Medeiros, M.L., Ayrosa A.M.I.B., Pitombo R.N.M. and Lannes, S.C.S. (2006) Sorption Isotherms of Coconut and Cupassu Products. Journal of Food Engineering, 73, 402-406.
https://doi.org/10.1016/j.jfoodeng.2005.02.002
[42]  Kakou, K.E., Akmel, D.C., Abouo, N.V., Assidjo, N.E. and Niamké, L.S. (2015) Water Adsorption Isotherm of Cocoa Beans (Theobroma cocoa L) Merchant. European Scientific Journal, 11, 355-370.
[43]  Sylchuk, T., Tsyrulnikova, V., Zuiko, V. and Аnastasiia R. (2021) Sorption Properties of Bread Based on Oatmeal. Ukrainian Food Journal, 10, 361-674.
https://doi.org/10.24263/2304-974X-2021-10-2-12
[44]  Iglesias, H.A. and Chirife, J. (1982) Water Sorption Parameters for Food and Food Components. Handbook of Food Isotherms, Academics Press, New York, 37.
[45]  Compaoré, A., Ouoba, S., Ouoba, K.H., Simo-Tagne, M., Rogaume, Y., Ahouannou, C., Dissa, A.O., Béré, A. and Koulidiati, J. (2022) A Modeling Study for Moisture Diffusivities and Moisture Transfer Coefficients in Drying of “Violet de Galmi” Onion Drying. Advances in Chemical Engineering and Science, 12, 172-196.
https://doi.org/10.4236/aces.2022.123013
[46]  Benhamou, A., Kouhila, M., Zeghmati, B. and Benyoucef, B. (2010) Modeling of Sorption Isotherms of Marjolaine Leaves. Renewable Energy Review, 13, 233-247.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133