全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Theoretical Study of Tris-(o-benzoquinonediimine)-First-Row Divalent Transition Metal Complexes

DOI: 10.4236/aces.2023.132013, PP. 172-188

Keywords: DFT, o-phenylenediamine, o-benzoquinodiimine, First-Row Divalent Transition Metals, Time Dependent–DFT, Coordination Complexes

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ligand o-phenylenediamine (opda) and its oxidized form, o-benzoquinonediimine (bqdi), act as a fascinating candidate coordinating toward transition metal ions leading to the photochemical hydrogen production in absence of photosensitizers. Herein, we report the systematic study of the interaction between the oxidized form bqdi ligand, tris-(o-benzoquinonediimine) with divalent first-row transition metal series using DFT calculations. The lowest energy structures, bond length, binding energies, frontier molecular orbital analysis, natural bond orbitals, and global reactivity descriptor were calculated using B3LYP/6-311G(d,P) level of theory. The time dependent-DFT at the CAM-B3LYP/6-311+G(d,p) level of theory was applied to determine the electronic structures and the optical spectra. The theoretical binding trend of the divalent first-row transition metal series is decreasing as follows: Cu >Ti > V > Co > Ni > Fe > Cr > Zn >Mn. Among them, the binding potency of iron (II) by the bqdi ligand was not predominantly sturdy as compared to other first-row divalent transition metal ions. The origin of strong coordination with Fe(II) is attributed to its extra capability to induce covalent coordination of bqdi ligands. The complex exhibited two strong peaks at 370 nm and 452 nm, due to the HOMO-3 to LUMO+1 and HOMO-1 to LUMO transitions, respectively. Natural bond orbital analysis showed that the major interaction happens between the N lone pair electrons of the ligand with an anti-bonding orbital of metal ions, in which Ti showed the highest interaction energy than other metal ions. The present systemic DFT study of bqdi ligands with the first-row transition metals strongly encourages the future establishment of photochemical hydrogen production in absence of

References

[1]  Mengele, A.K. and Rau, S. (2023) Learning from Nature’s Example: Repair Strategies in Light-Driven Catalysis. JACS Au, 3, 36-46.
https://doi.org/10.1021/jacsau.2c00507
[2]  Yuan, Y., Liu, X., Tang, W., Li, Z., Huang, G., Zou, H., Yu, R. and Shui, J. (2023) Honeycomb ZrCo Intermetallic for High Performance Hydrogen and Hydrogen Isotope Storage. Applied Materials & Interfaces, 15, 3904-3911.
https://doi.org/10.1021/acsami.2c17173
[3]  Burton, N.A., Padilla, R.V., Rose, A. and Habibullah, H. (2021) Increasing the Efficiency of Hydrogen Production from Solar Water Electrolysis. Renewable & Sustainable Energy Reviews, 135, Article ID: 110255.
https://doi.org/10.1016/j.rser.2020.110255
[4]  Brey, J. (2021) Use of hydrogen as a Seasonal Energy Storage System to Manage Renewable Power Development in Spain by 2030. International Journal of Hydrogen Energy, 46, 17447-17457.
https://doi.org/10.1016/j.rser.2020.110255
[5]  Boateng, E., Zalm, J.V.D. and Chen, A. (2021) Design and Electrochemical Study of Three-Dimensional Expanded Graphite and Reduced Graphene Oxide Nanocomposites Decorated with Pd Nanoparticles for Hydrogen Storage. Journal of Physical Chemistry C, 125, 22970-22981.
https://doi.org/10.1021/acs.jpcc.1c06158
[6]  Hanif, Z., Choi, K.-I., Jung, J.-H., Pornea, A.G.M., Park, E., Cha, J., Kim, H.-R., Choi, J.-H. and Kim, J. (2023) Dispersion Enhancement of Boron Nitride Nanotubes in a Wide Range of Solvents Using Plant Polyphenol-Based Surface Modification. Industrial & Engineering Chemistry Research, 62, 2662-2670.
https://doi.org/10.1021/acs.iecr.2c03897
[7]  Bhattacharjee, S., Chen, C. and Ahn, W.S. (2014) Chromium Terephthalate Metal-Organic Framework MIL-101: Synthesis, Functionalization and Applications for Adsorption and Catalysis. RSC Advances, 4, 52500-52525.
https://doi.org/10.1039/C4RA11259H
[8]  Chirik, P.J. and Wieghardt, K. (2010) Radical Ligands Confer Nobility on Base-Metal Catalysts. Science, 327, 794-795.
https://doi.org/10.1126/science.1183281
[9]  Kapovsky, M., Christopher, D., Elaine, S.D., Rowshan, A.B., Vanessa, R. and Lever, A.B.P. (2013) Proton-Induced Disproportionation of a Ruthenium Noninnocent Ligand Complex Yielding a Strong Oxidant and a Strong Reductant. Inorganic Chemistry, 52, 169-181.
https://doi.org/10.1021/ic301573c
[10]  Naya, S.-I., Kimura, K. and Tada, H. (2013) One-Step Selective Aerobic Oxidation of Amines to Imines by Gold Nanoparticle-Loaded Rutile Titanium(IV) Oxide Plasmon Photocatalyst. ACS Catalysis, 3, 10-13.
https://doi.org/10.1021/cs300682d
[11]  Costentin, C., Robert, M. and Savéant, J.-M. (2010) Update 1 of: Electrochemical Approach to the Mechanistic Study of Proton-Coupled Electron Transfer. Chemical Reviews, 110, PR1-PR40.
https://doi.org/10.1021/cr100038y
[12]  Small, Y.A., DuBois, D.L., Fujita, E. and Muckerman, J. (2011) Proton Management as a Design Principle for Hydrogenase-Inspired Catalysts. Energy & Environmental Science, 4, 3008-3020.
https://doi.org/10.1039/c1ee01170g
[13]  Kuwahara, M., Nishioka, M., Yoshida, M. and Fujita, K.-I. (2018) A Sustainable Method for the Synthesis of Acetic Acid Based on Dehydrogenation of an Ethanol—Water Solution Catalyzed by an Iridium Complex Bearing a Functional Bipyridonate Ligand. ChemCatChem, 10, 3636-3640.
https://doi.org/10.1002/cctc.201800680
[14]  Peng, S.-M., Chen, C.-T., Liaw, D.-S., Chen, C.-I. and Wanf, Y. (1985) Establishment of the Bond Patterns of o-Benzoquinonediimine and Semi-o-Benzoquinone-diimine: Crystal Structures of Metal Complexes, [FeII(bqdi)3](PF6)2, [CoII(s-bqdi)2] and [CoIIICl(s-bqdi)2]. Inorganica Chimica Acta, 101, L31-L33.
https://doi.org/10.1016/S0020-1693(00)87639-2
[15]  Cheng, H.-Y. and Peng, S.-M. (1990) Synthesis and Crystal Structure of o-Phenylene-Diaminebis (o-Benzoquinonediimine) Ruthenium(II) Hexafluorophosphate. Inorganica Chimica Acta, 169, 23-24.
https://doi.org/10.1016/S0020-1693(00)82030-7
[16]  Matsumoto, T., Chang, H.-C., Wakijaka, M., Ueno, S., Kobayashi, A., Nakayama, A., Taketsugu, T. and Kato, M. (2013) Nonprecious-Metal-Assisted Photochemical Hydrogen Production from ortho-Phenylenediamine. Journal of the American Chemical Society, 135, 8646-8654.
https://doi.org/10.1021/ja4025116
[17]  Matsumoto, T., Yamanoto, R., Wakizaka, M., Nakada, A. and Chang, H.-C. (2020) Molecular Insights into the Ligand-Based Six-Proton- and Six-Electron-Transfer Processes Between Tris-ortho-Phenylenediamines and Tris-ortho-Benzoquinodiimines. Chemistry: A European Journal, 26, 9609-9619.
https://doi.org/10.1002/chem.202001873
[18]  Verma, P., Weir, J., Mirica, L. and Stack, T.D.P. (2011) Tale of a Twist: Magnetic and Optical Switching in Copper(II) Semiquinone Complexes. Inorganic Chemistry, 50, 9816-9825.
https://doi.org/10.1021/ic200958g
[19]  Du Bois, D.L. and Bullock, R.M. (2011) Molecular Electrocatalysts for the Oxidation of Hydrogen and the Production of Hydrogen—The Role of Pendant Amines as Proton Relays. European Journal of Inorganic Chemistry, 2011, 1017-1027.
https://doi.org/10.1002/ejic.201001081
[20]  Bine, F.K., Tasheh, N.S. and Ghogomu, J.N. (2021) A Quantum Chemical Screening of Two Imidazole-Chalcone Hybrid Ligands and Their Pd, Pt and Zn Complexes for Charge Transport and Nonlinear Optical (NLO) Properties: A DFT Study. Computational Chemistry, 9, 215-237.
https://doi.org/10.4236/cc.2021.94012
[21]  Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 98, 5648-5652.
https://doi.org/10.1063/1.464913
[22]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2016) Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford.
[23]  Barone, V. and Cossi, M. (1998) Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. The Journal of Physical Chemistry A, 102, 1995-2001.
https://doi.org/10.1021/jp9716997
[24]  Cossi, M., Rega, N., Acalmani, G. and Barone, V. (2003) Energies, Structures and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. Journal of Computational Chemistry, 24, 669-681.
https://doi.org/10.1002/jcc.10189
[25]  Furche, F. and Burke, K. (2005) Chapter 2 Time-Dependent Density Functional Theoryin Quantum Chemistry. In: David, C.S., Ed. Annual Reports in Computational Chemistry, Vol. 1, Elsevier Ltd., New York, 19-30.
https://doi.org/10.1016/S1574-1400(05)01002-9
[26]  Yanai, T., Tew, D.P. and Handy, N.C. (2004) A New Hybrid Exchange—Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chemical Physics Letters, 393, 51-57.
https://doi.org/10.1016/j.cplett.2004.06.011
[27]  Matin, M.A., Islam, M.M., Bredow, T. and Aziz, M.A. (2017) The Effects of Oxidation States, Spin States and Solvents on Molecular Structure, Stability and Spectroscopic Properties of Fe-Catechol Complexes: A Theoretical Study. Advances in Chemical Engineering and Science, 7, 137-153.
https://doi.org/10.4236/aces.2017.72011
[28]  Matin, M.A., Shaikh, M., Hossain, M., Alauddin, M., Debnath, T. and Aziz, M. (2021) The Effects of Oxidation States and Spin States of Chromium Interaction with Sargassum Sp.: A Spectroscopic and Density Functional Theoretical Study. Green and Sustainable Chemistry, 11, 125-141.
https://doi.org/10.4236/gsc.2021.114011
[29]  Christoph, G.G. and Goedken, V.L. (1973) Crystal and Molecular Structure of a Salt of the (o-Benzoquinone Diimine) Tetracyanoiron(II) Ion. Journal of the American Chemical Society, 95, 3869-3875.
https://doi.org/10.1021/ja00793a009
[30]  Belser, P., Von Zelewsky, A. and Zehnder, M. (1981) Synthesis and Properties of Ruthenium(II) Complexes with o-Quinodiimine Ligands. Crystal and Molecular Structure of Ru(bpy)2(C6H4(NH)2)(PF6)2. Inorganic Chemistry, 20, 3098-3103.
https://doi.org/10.1021/ic50223a068
[31]  Hall, G.S. and Soderberg, R.H. (1968) Crystal and Molecular Structure of bis(o-Phenylenediamino)nickel, Ni[C6H4(NH)2]2. Inorganic Chemistry, 7, 2300-2303.
https://doi.org/10.1021/ic50069a025
[32]  Jahn, H.A., Teller, E. and Donnan, F.G. (1937) Stability of Polyatomic Molecules in Degenerate Electronic States-I—Orbital Degeneracy. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 161, 220-235.
https://doi.org/10.1098/rspa.1937.0142
[33]  Aakesson, R., Pettersson, L.G.M., Sandstroem, M. and Wahlgren, U. (1994) Ligand Field Effects in the Hydrated Divalent and Trivalent Metal Ions of the First and Second Transition Periods. Journal of the American Chemical Society, 116, 8691-8704.
https://doi.org/10.1021/ja00098a032
[34]  Boys, S.F. and Bernardi, F. (1970) The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Molecular Physics, 19, 553-566.
https://doi.org/10.1080/00268977000101561
[35]  Bittner, M.M., Lindeman, S.V., Popescu, C.V. and Fiedler, A.T. (2014) Dioxygen Reactivity of Biomimetic Fe(II) Complexes with Noninnocent Catecholate, o-Aminophenolate and o-Phenylenediamine Ligands. Inorganic Chemistry, 53, 4047-4061.
https://doi.org/10.1021/ic403126p
[36]  Reed, A., Weinstock, R. and Weinhold, F. (1985) Natural Population Analysis. The Journal of Chemical Physics, 83, 735-746.
https://doi.org/10.1063/1.449486
[37]  Singh, U.C. and Kollman, P.A. (1984) An Approach to Computing Electrostatic Charges for Molecules. Journal of Computational Chemistry, 5, 129-145.
https://doi.org/10.1002/jcc.540050204
[38]  Breneman, C.M. and Wiberg, K.B. (1990) Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. Journal of Computational Chemistry, 11, 361-373.
https://doi.org/10.1002/jcc.540110311
[39]  Chirlian, L.E. and Francl, M.M. (1987) Atomic Charges Derived from Electrostatic Potentials: A Detailed Study. Journal of Computational Chemistry, 8, 894-905.
https://doi.org/10.1002/jcc.540080616
[40]  Hu, H., Lu, Z. and Yang, W. (2007) Fitting Molecular Electrostatic Potentials from Quantum Mechanical Calculations. Journal of Chemical Theory and Computation, 3, 1004-1013.
https://doi.org/10.1021/ct600295n
[41]  Matin, M.A., Chitumalla, R.K., Lim, M., Gao, X. and Jang, J.K. (2015) Density Functional Theory Study on the Cross-Linking of Mussel Adhesive Proteins. The Journal of Physical Chemistry B, 119, 5496-5504.
https://doi.org/10.1021/acs.jpcb.5b01152
[42]  Foster, J.P. and Weinhold, F. (1980) Natural Hybrid Orbitals. Journal of the American Chemical Society, 102, 7211-7218.
https://doi.org/10.1021/ja00544a007
[43]  Reed, A.E., Curtiss, L.A. and Weinhold, F. (1988) Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews, 88, 899-926.
https://doi.org/10.1021/cr00088a005

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133