全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

气候变化与人类活动背景下城市极端暴雨的水文响应
Hydrological Response of Urban Extreme Rainstorm under Climate Change and Human Activities

, PP. 1-9

Keywords: 郑州7?20特大暴雨,气候变化,城市极端暴雨,水文响应
Zhengzhou 7?20 Rainstorm
, Climate Change, Urban Extreme Rainstorm, Hydrological Response

Full-Text   Cite this paper   Add to My Lib

Abstract:

郑州7?20特大暴雨涉及的水文科学问题是气候变化与人类活动背景下城市极端暴雨的水文响应。本文从气候变化与雨洪的“高置信度”联系、极端暴雨仍遵守降雨径流规律、定义城市极端暴雨重现期的难度、城市设计暴雨分析方法的异同和融合、海绵城市与水文循环和极端暴雨情景下洪涝应急体系的水文应对6个方面论述了城市极端暴雨的形成原因、分析难点和应对关键,并得出如下结论:1) 气候变化是城市极端暴雨的气候尺度背景,是否考虑气候变化,极端暴雨的产汇流原理并无不同之处,城市暴雨灾害涉及的科学问题是水文循环的基本问题,核心是理清直接人类活动背景下不透水面积增大、调蓄场所减少等的产汇流规律。2) 市政排水与水利排涝的面雨量重现期计算方法不一,可通过重现期衔接关系、地区线性矩估计等技术手段进行融合;参照江河防洪标准,选用典型年进行排涝设计也是较实用的选择。3) 从国家水网的高度来重新认识城市洪涝防治,以自然河湖为基础,引调排水工程为通道,调蓄工程为节点,重点要加强水系连通,增加大容量调蓄设施,开发城市水系智慧调度与管理系统,提升应对措施极端暴雨的预报预警能力。
The hydrologic problem with respect to the 7?20 torrential rainstorm in Zhengzhou city was the hydro-logic response of urban extreme rainstorm under climate change and human activities. This paper dis-cussed the causes, and analyzed the difficulties and countermeasures of urban extreme rainstorm from the following six aspects, i.e., the “high confidence” relationship between climate change and rainfall and flood, extreme rainstorm still following the law of rainfall runoff, the difficulty of defining the return period of urban extreme rainstorm, the similarities, differences and integration of urban design rainstorm methods, sponge city and hydrological cycle, and hydrological response of flood emergency system under extreme rainstorm. The main conclusions are as follows: 1) climate change is the climate scale background of urban extreme rainstorm. Whether climate change is considered or not, there is no difference in the production and concentration principle of extreme rainstorm. The scientific problems involved in urban rainstorm disaster are the basic problems of hydrological cycle, and the core is to clarify the runoff generation and concentration law with increase of impervious area and decrease of regulating structure under human activities. 2) The calculation methods of areal rainfall return period of municipal department and water conservancy department are different, which can be integrated by technical means such as return period connection relationship, regional linear moment method and so on. It is also a practical choice to select typical year method for drainage design with reference to river flood control standards. 3) From the perspective of the national water network to reconsider the prevention and control of urban flood is necessary. Based on natural rivers and lakes, diversion, drainage, regulation and storage projects as channels and nodes, respectively, it is desired to strengthen the connection of water systems and to increase large-capacity regulation and storage facilities, as well as developing the intelligent operation and management system of urban river

References

[1]  何秉顺. 河南郑州山区4市2021年“7?20”特大暴雨灾害调查的思考与建议[J]. 中国防汛抗旱, 2022, 32(3): 37-40. HE Bingshun. Reflections and suggestions on the investigation of the “7?20” heavy rainstorm in 2021 in 4 cities in the mountainous region of Zhengzhou, Henan. China Flood and Drought Control, 2022, 32(3): 37-40. (in Chinese)
[2]  苏爱芳, 吕晓娜, 崔丽曼, 李周, 席乐, 栗晗. 郑州“7?20”极端暴雨天气的基本观测分析[J]. 暴雨灾害, 2021, 40(5): 445-454. SU Aifang, LV Xiaona, CUI Liman, LI Zhou, XI Le and LI Han. Basic observation analysis of the extreme rainstorm in Zhengzhou on 7?20. Heavy Rainfall Disaster, 2021, 40(5): 445-454. (in Chinese)
[3]  史文茹, 李昕, 曾明剑, 张冰, 王宏斌, 朱科锋, 诸葛小勇. “7?20”郑州特大暴雨的多模式对比及高分辨率区域模式预报分析[J]. 大气科学学报, 2021, 44(5): 688-702. SHI Wenru, LI Xin, ZENG Mingjian, ZHANG Bing, WANG Hongbin, ZHU Kefeng and ZHUGE Xiaoyong. Multi-model comparison and analysis of high-resolution regional model forecasts for the “7?20” heavy rainstorm in Zhengzhou. Journal of Atmospheric Sciences, 2021, 44(5): 688-702. (in Chinese)
[4]  章卫军, 廖青桃, 杨森, 张馨匀, 张晨玲, 向美焘, 雷征旻. 从郑州“2021.7.20”水灾模型推演看城市洪涝风险管理[J]. 中国防汛抗旱, 2021, 31(9): 1-4. ZHANG Weijun, LIAO Qingtao, YANG Sen, ZHANG Xingyun, ZHANG Chenling, XIANG Meitao and LEI Zhengmin. Urban flood risk management from “2021.7.20” flood modeling in Zhengzhou. China Flood Control and Drought Relief, 2021, 31(9): 1-4. (in Chinese)
[5]  陈文龙, 杨芳, 宋利祥, 张大伟, 刘培, 陈高峰. 高密度城市暴雨洪涝防御对策——郑州“7?20”特大暴雨启示[J]. 中国水利, 2021(15): 18-20. CHEN Wenlong, YANG Fang, SONG Lixiang, ZHANG Dawei, LIU Pei and CHEN Gaofeng. Countermeasures against heavy rainfall and flooding in high-density cities: Insights from the “7?20” heavy rainfall in Zhengzhou. China Water Resources, 2021(15): 18-20. (in Chinese)
[6]  中国气象局气候变化中心. 中国气候变化蓝皮书(2021) [M]. 北京: 科学出版社, 2021. Climate Change Center of China Meteorological Administration China climate change blue book (2021). Beijing: Science Press, 2021. (in Chinese)
[7]  OUYANG S., XU C. J. and SHAO J. Discussion on the analysis method of urban design rainstorm under the “new normal” of “city seeing the sea”. IOP Conference Series Earth and Environmental Science, 2019, 344: 012109.
[8]  王俊, 贾建伟, 张明波, 等. 水文分析计算与海绵城市[J]. 中国防汛抗旱, 2017, 27(3): 74-78. WANG Jun, JIA Jianwei, ZHANG Mingbo, et al. Hydrological analysis and calculation of sponge cities. China Flood and Drought Control, 2017, 27(3): 74-78. (in Chinese)
[9]  张明珠, 曾娇娇, 黄国如, 等. 市政排水与水利排涝设计暴雨重现期衔接关系的分析[J]. 水资源与水工程学报, 2015, 26(1): 131-135. ZHANG Mingzhu., ZENG Jiaojiao, HUANG Guoru, et al. Analysis of the relationship between municipal drainage and hy-draulic drainage design storm recurrence period. Journal of Water Resources and Water Engineering, 2015, 26(1): 131-135. (in Chinese)
[10]  谢华, 黄介生. 城市化地区市政排水与区域排涝关系研究[J]. 灌溉排水学报, 2007(5): 10-13. XIE Hua, HUANG Jiesheng. Study on the relationship between municipal drainage and regional flooding in urbanized areas. Journal of Irrigation and Drainage, 2007(5): 10-13. (in Chinese)
[11]  林炳章. 水文气象分区线性矩法规范防洪设计标准的研究和应用[C]//中国水利学会. 中国水利学会2010学术年会论文集(上册). 郑州: 黄河水利出版社, 2010: 272-280. LIN Bingzhang. Research and application of the linear moment method of hydro-meteorological zoning to regulate flood control design criteria//Chinese Hydraulic Engineering Society. Proceedings of the 2010 Annual Academic Conference of the Chinese Water Resources Society (Previous Book). Zhengzhou: The Yellow River Water Conservancy Press, 2010: 272-280. (in Chinese)
[12]  尹家波, 郭生练, 王俊, 等. 基于贝叶斯模式平均方法融合多源数据的水文模拟研究[J]. 水利学报, 2020, 51(11): 1335-1346. YIN Jiabo, GUO Shenglian, WANG Jun, et al. Hydrological simulation based on Bayesian model averaging method to fuse multi-source data. Journal of Hydraulic Engineering, 2020, 51(11): 1335-1346. (in Chinese)
[13]  刘俊, 韩波, 王战平, 等. 秦岭北麓城市型河流LID建设模拟及其水文响应特征研究[J]. 中国农村水利水电, 2021(2): 83-90. LIU Jun, HAN Bo, WANG Zhanping, et al. Simulation of urban river LID construction and its hydrological response characteristics in the northern Qinling Mountains. China Rural Water Conservancy and Hydropower, 2021(2): 83-90. (in Chinese)
[14]  徐宗学, 叶陈雷. 城市暴雨洪涝模拟: 原理、模型与展望[J]. 水利学报, 2021, 52(4): 381-392. XU Zongxue, YE Chenlei. Urban storm flood simulation: Principles, models and perspectives. Journal of Hydraulic Engineering, 2021, 52(4): 381-392. (in Chinese).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413