全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Two-Stage Procrustes Rotation with Sparse Target Matrix and Least Squares Criterion with Regularization and Generalized Weighting

DOI: 10.4236/ojs.2023.132014, PP. 264-284

Keywords: Factor Rotation, Procrustes Rotation, Simplicity, Alternating Least Squares

Full-Text   Cite this paper   Add to My Lib

Abstract:

In factor analysis, a factor loading matrix is often rotated to a simple target matrix for its simplicity. For the purpose, Procrustes rotation minimizes the discrepancy between the target and rotated loadings using two types of approximation: 1) approximate the zeros in the target by the non-zeros in the loadings, and 2) approximate the non-zeros in the target by the non-zeros in the loadings. The central issue of Procrustes rotation considered in the article is that it equally treats the two types of approximation, while the former is more important for simplifying the loading matrix. Furthermore, a well-known issue of Simplimax is the computational inefficiency in estimating the sparse target matrix, which yields a considerable number of local minima. The research proposes a new rotation procedure that consists of the following two stages. The first stage estimates sparse target matrix with lesser computational cost by regularization technique. In the second stage, a loading matrix is rotated to the target, emphasizing on the approximation of non-zeros to zeros in the target by least squares criterion with generalized weighing that is newly proposed by the study. The simulation study and real data examples revealed that the proposed method surely simplifies loading matrices.

References

[1]  Harman, H.H. (1976) Modern Factor Analysis. 3rd Edition, University of Chicago Press, Chicago.
[2]  Izenman, A.J. (2008) Modern Multivariate Statistical Techniques. Springer, New York.
https://doi.org/10.1007/978-0-387-78189-1
[3]  Yanai, H., Shigemasu, K., Mayekawa, S. and Ichikawa, M. (1990) Inshi-Bunseki. Asakura Shoten, Tokyo. (In Japanese)
[4]  Adachi, K. (2019) Factor Analysis: Latent Variable, Matrix Decomposition, and Constrained Uniqueness Formulations. Wiley Interdisciplinary Reviews: Computational Statistics, 11, e1458.
https://doi.org/10.1002/wics.1458
[5]  Adachi, K. (2022) Factor Analysis Procedures Revisited from the Comprehensive Model with Unique Factors Decomposed into Specific Factors and Errors. Psychometrika, 87, 267-991.
https://doi.org/10.1007/s11336-021-09824-8
[6]  Thurstone, L.L. (1947) Multiple-Factor Analysis: A Development and Expansion of the Vectors of Mind. University of Chicago Press, Chicago.
[7]  Browne, M. W. (2001) An Overview of Analytic Rotation in Exploratory Factor Analysis. Multivariate Behavioral Research, 36, 111-150.
https://doi.org/10.1207/S15327906MBR3601_05
[8]  Kaiser, H.F. (1958) The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika, 23, 187-240.
https://doi.org/10.1007/BF02289233
[9]  Browne, M.W. (1967) On Oblique Procrustes Rotation. Psychometrika, 32, 125-132.
https://doi.org/10.1007/BF02289420
[10]  Gower, J.C. and Dijksterhuis, G.B. (2004) Procrustes Problems (Vol. 30). OUP, Oxford.
https://doi.org/10.1093/acprof:oso/9780198510581.001.0001
[11]  Zhang, G., Hattori, M., Trichtinger, L.A. and Wang, X. (2019) Target Rotation with both Factor Loadings and Factor Correlations. Psychological Methods, 24, 390-402.
https://doi.org/10.1037/met0000198
[12]  Hendrickson, A.E. and White, P.O. (1964) Promax: A Quick Method for Rotation to Oblique Simple Structure. British Journal of Mathematical and Statistical Psychology, 17, 65-70.
https://doi.org/10.1111/j.2044-8317.1964.tb00244.x
[13]  Yamashita, N. and Adachi, K. (2020) Permutimin: Factor Rotation to Simple Structure with Permutation of Variables. Multivariate Behavioral Research, 55, 17-29.
https://doi.org/10.1080/00273171.2019.1598331
[14]  Kiers, H.A.L. (1994) Simplimax: Oblique Rotation to an Optimal Target with Simple Structure. Psychometrika, 59, 567-579.
https://doi.org/10.1007/BF02294392
[15]  Jennrich, R.I. (2004) Derivative Free Gradient Projection Algorithms for Rotation. Psychometrika, 69, 475-480.
https://doi.org/10.1007/BF02295647
[16]  Jennrich, R.I. (2004) Rotation to Simple Loadings Using Component Loss Functions: The Orthogonal Case. Psychometrika, 69, 257-273.
https://doi.org/10.1007/BF02295943
[17]  Hastie, T., Tibshirani, R. and Wainwright, M. (2019) Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, Boca Raton.
[18]  Hirose, K. and Yamamoto, M. (2015) Sparse Estimation via Nonconcave Penalized Likelihood in Factor Analysis Model. Statistics and Computing, 25, 863-875.
https://doi.org/10.1007/s11222-014-9458-0
[19]  Jennrich, R.I. (2004) A Simple General Method for Oblique Rotation. Psychometrika, 69, 257-273.
https://doi.org/10.1007/BF02295943
[20]  Lorenzo-Seva, U. (2003) A Factor Simplicity Index. Psychometrika, 68, 49-60.
https://doi.org/10.1007/BF02296652
[21]  Yates, A. (1987) Multivariate Exploratory Data Analysis: A Perspective on Exploratory Factor Analysis. State University of New York Press, New York.
[22]  Hattori, M., Zhang, G. and Preacher, K.J. (2017) Multiple Local Solutions and Goemin Rotation. Multivariate Behavioral Research, 52, 720-731.
https://doi.org/10.1080/00273171.2017.1361312
[23]  Cureton, E.E. and Mulaik, S.A. (1975) The Weighted Varimax Rotation and the Promax Rotation. Psychometrika, 40, 183-195.
https://doi.org/10.1007/BF02291565
[24]  PromptCloud (2014) Exploratory Factor Analysis in R.
https://www.promptcloud.com/blog/exploratory-factor-analysis-in-r
[25]  Makino, N. (2022) Rotation in Correspondence Analysis from the Canonical Correlation Perspective. Psychometrika, 87, 1045-1063.
https://doi.org/10.1007/s11336-021-09833-7
[26]  van de Velden and Kiers, H.A.L. (2005) Rotation in Correspondence Analysis. Journal of Classification, 22, 251-271.
https://doi.org/10.1007/s00357-005-0016-5
[27]  Satomura, H. and Adachi, K. (2013) Oblique Rotaton in Canonical Correlation Analysis Reformulated as Maximizing the Generalized Coefficient of Determination. Psychometrika, 78, 526-537.
https://doi.org/10.1007/s11336-012-9310-4
[28]  Yamashita, N. (2012) Canonical Correlation Analysis Formulated as Maximizing Sum of Squared Correlations and Rotation of Structure Matrices. The Japanese Journal of Behaviormetrics, 39, 1-9. (In Japanese)
https://doi.org/10.2333/jbhmk.39.1
[29]  Adachi, K. (2009) Joint Procrustes Analysis for Simultaneous Nonsingular Transformation of Component Score and Loading Matrices. Psychometrika, 74, 667-683.
https://doi.org/10.1007/s11336-009-9131-2

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413