全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Epigenetic and Posttranscriptional Regulation in Retinoblastoma

DOI: 10.4236/abb.2023.144013, PP. 190-209

Keywords: Retinoblastoma, Epigenetic, ncRNAs, miRNAs, lncRNAs, circRNAs, ceRNAs

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Retinoblastoma 1 (RB1) gene, located on chromosome 13q14 and encodes the tumor-suppressor retinoblastoma protein, is the cause of Retinoblastoma. The mutational inactivation of both gene alleles brings on this cancer. Retinoblastoma (RB) high-risk histopathological characteristics indicate metastasis or local recurrence with rapid progresses following RB1 inactivation. There is growing interest in regulatory activities unconnected to the coding region of the genome, or exome, in addition to epigenetic control mechanisms. The altered epigenome is significant, though by no means the only, problem in the etiology of Retinoblastoma. After all, cancer development is a multistep process in which numerous dissimilar genetic, epigenetic, and posttranscriptional modifications result in a shared phenotype. This study emphasizes the most recent developments in posttranscriptional change and epigenetics related to retinoblastoma tumor biology. Here, we highlight the novel biomarkers the retinoblastoma tumor has expressed to improve patient survival.

References

[1]  Sun, J. (2020) Biomarkers in Retinoblastoma. International Journal of Ophthalmology, 13, 325-341.
https://doi.org/10.18240/ijo.2020.02.18
[2]  Knudsen, E., Sexton, C. and Mayhew, C. (2006) Role of the Retinoblastoma Tumor Suppressor in the Maintenance of Genome Integrity. Current Molecular Medicine, 6, 749-757.
https://doi.org/10.2174/1566524010606070749
[3]  Sun, J., Xi, H.Y., Shao, Q. and Liu, Q.H. (2020) Biomarkers in Retinoblastoma. International Journal of Ophthalmology, 13, 325-341.
https://doi.org/10.18240/ijo.2020.02.18
[4]  Bremner, R. and Sage, J. (2014) The Origin of Human Retinoblastoma. Nature, 514, 313.
https://doi.org/10.1038/nature13748
[5]  Thériault, B.L., Dimaras, H., Gallie, B.L. and Corson, T.W. (2014) The Genomic Landscape of Retinoblastoma: A Review. Clinical & Experimental Ophthalmology, 42, 33-52.
https://doi.org/10.1111/ceo.12132
[6]  Singh, U., Malik, M.A., Goswami, S., Shukla, S. and Kaur, J. (2016) Epigenetic Regulation of Human Retinoblastoma. Tumor Biology, 37, 14427-14441.
https://doi.org/10.1007/s13277-016-5308-3
[7]  Guzel, E. (2019) Tumor Suppressor and Oncogenic Role of Long Non-Coding RNAs in Cancer. Northern Clinics of Istanbul, 7, 81-86.
https://doi.org/10.14744/nci.2019.46873
[8]  Fernandez-Diaz, D., Rodriguez-Vidal, C., Silva-Rodríguez, P., Paniagua, L., Blanco-Teijeiro, M.J., Pardo, M., et al. (2022) Applications of Non-Coding RNAs in Patients with Retinoblastoma. Frontiers in Genetics, 13, Article ID: 842509.
https://doi.org/10.3389/fgene.2022.842509
[9]  Delsin, L.E.A., Salomao, K.B., Pezuk, J.A. and Brassesco, M.S. (2019) Expression Profiles and Prognostic Value of miRNAs in Retinoblastoma. Journal of Cancer Research and Clinical Oncology, 145, 1-10.
https://doi.org/10.1007/s00432-018-2773-7
[10]  Bartel, D.P. (2018) Metazoan MicroRNAs. Cell, 173, 20-51.
https://doi.org/10.1016/j.cell.2018.03.006
[11]  Ha, M. and Kim, V.N. (2014) Regulation of microRNA Biogenesis. Nature Reviews Molecular Cell Biology, 15, 509-524.
https://doi.org/10.1038/nrm3838
[12]  Annese, T., Tamma, R., de Giorgis, M. and Ribatti, D. (2020) microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Frontiers in Oncology, 10, Article ID: 581007.
https://doi.org/10.3389/fonc.2020.581007
[13]  Dalgard, C.L., Gonzalez, M., deNiro, J.E. and O’Brien, J.M. (2009) Differential MicroRNA-34a Expression and Tumor Suppressor Function in Retinoblastoma Cells. Investigative Opthalmology & Visual Science, 50, 4542.
https://doi.org/10.1167/iovs.09-3520
[14]  Zhao, J.J., Yang, J., Lin, J., et al. (2009) Identification of miRNAs Associated with Tumorigenesis of Retinoblastoma by miRNA Microarray Analysis. Child’s Nervous System, 25, 13-20.
https://doi.org/10.1007/s00381-008-0701-x
[15]  Sreenivasan, S., Thirumalai, K., Danda, R. and Krishnakumar, S. (2012) Effect of Curcumin on miRNA Expression in Human Y79 Retinoblastoma Cells. Current Eye Research, 37, 421-428.
https://doi.org/10.3109/02713683.2011.647224
[16]  Beta, M., Venkatesan, N., Vasudevan, M., et al. (2013) Identification and in Silico Analysis of Retinoblastoma Serum microRNA Profile and Gene Targets towards Prediction of Novel Serum Biomarkers. Bioinformatics and Biology Insights, 7, 21-34.
https://doi.org/10.4137/BBI.S10501
[17]  Liu, S.S., Wang, Y.S., Sun, Y.F., et al. (2014) Plasma microRNA-320, microRNA-let-7e, and microRNA-21 as Novel Potential Biomarkers for the Detection of Retinoblastoma. Biomedical Reports, 2, 424-428.
https://doi.org/10.3892/br.2014.246
[18]  Reis, A.H.O., Vargas, F.R. and Lemos, B. (2012) More Epigenetic Hits than Meets the Eye: microRNAs and Genes Associated with the Tumorigenesis of Retinoblastoma. Frontiers in Genetics, 3, 284.
https://doi.org/10.3389/fgene.2012.00284
[19]  Mitra, M., Mohanty, C., Harilal, A., et al. (2012) A Novel in Vitro Three-Dimensional Retinoblastoma Model for Evaluating Chemotherapeutic Drugs. Molecular Vision, 18, 1361-1378.
[20]  Montoya, V., Fan, H., Bryar, P.J., et al. (2015) Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation. PLOS ONE, 10, e0138366.
https://doi.org/10.1371/journal.pone.0138366
[21]  Song, L., Huang, Y., Zhang, X., et al. (2020) Downregulation of microRNA-224-3p Hampers Retinoblastoma Progression via Activation of the Hippo-YAP Signaling Pathway by Increasing LATS2. Investigative Opthalmology & Visual Science, 61, 32.
https://doi.org/10.1167/iovs.61.3.32
[22]  Jo, D.H., Kim, J.H., Cho, C.S., et al. (2014) STAT3 Inhibition Suppresses the Proliferation of Retinoblastoma through Down-Regulation of the Positive Feedback Loop of STAT3/miR-17-92 Clusters. Oncotarget, 5, 11513-11525.
https://doi.org/10.18632/oncotarget.2546
[23]  Zhang, T., Yang, J., Gong, F., et al. (2020) Long Non-Coding RNA CASC9 Promotes the Progression of Retinoblastoma via Interacting with miR-145-5p. Cell Cycle, 19, 2270-2280.
https://doi.org/10.1080/15384101.2020.1802813
[24]  Mattick, J.S. and Rinn, J.L. (2015) Discovery and Annotation of Long Non-Coding RNAs. Nature Structural & Molecular Biology, 22, 5-7.
https://doi.org/10.1038/nsmb.2942
[25]  Gendrel, A.V. and Heard, E. (2014) Non-Coding RNAs and Epigenetic Mechanisms during X-Chromosome Inactivation. Annual Review of Cell and Developmental Biology, 30, 561-580.
https://doi.org/10.1146/annurev-cellbio-101512-122415
[26]  Rinn, J.L. and Chang, H.Y. (2012) Genome Regulation by Long Non-Coding RNAs. Annual Review of Biochemistry, 81, 145-166.
https://doi.org/10.1146/annurev-biochem-051410-092902
[27]  Zhang, H., Zhong, J., Bian, Z., et al. (2017) Long Non-Coding RNA CCAT1 Promotes Human Retinoblastoma SO-RB50 and Y79 Cells through Negative Regulation of miR-218-5p. Biomedicine & Pharmacotherapy, 87, 683-691.
https://doi.org/10.1016/j.biopha.2017.01.004
[28]  Fu, K., Zhang, K. and Zhang, X. (2022) LncRNA HOTAIR Facilitates Proliferation and Represses Apoptosis of Retinoblastoma Cells through the miR-20b-5p/RRM2/ PI3K/AKT Axis. Orphanet Journal of Rare Diseases, 17, 119.
https://doi.org/10.1186/s13023-022-02206-y
[29]  Yang, G., Fu, Y., Lu, X., et al. (2018) LncRNA HOTAIR/miR-613/c-met Axis Modulated Epithelial-Mesenchymal Transition of Retinoblastoma Cells. Journal of Cellular and Molecular Medicine, 22, 5083-5096.
https://doi.org/10.1111/jcmm.13796
[30]  Hu, C., Liu, S., Han, M., Wang, Y. and Xu, C. (2018) RETRACTED: Knockdown of lncRNA XIST Inhibits Retinoblastoma Progression by Modulating the miR-124/STAT3 Axis. Biomedicine & Pharmacotherapy, 107, 547-554.
https://doi.org/10.1016/j.biopha.2018.08.020
[31]  Xu, Y., Fu, Z., Gao, X., Wang, R. and Li, Q. (2021) Long Non-Coding RNA XIST Promotes Retinoblastoma Cell Proliferation, Migration, and Invasion by Modulating microRNA-191-5p/Brain-Derived Neurotrophic Factor. Bioengineered, 12, 1587-1598.
https://doi.org/10.1080/21655979.2021.1918991
[32]  Wang, Y., Sun, D., Sheng, Y., Guo, H., Meng, F. and Song, T. (2020) XIST Promotes Cell Proliferation and Invasion by Regulating miR-140-5p and SOX4 in Retinoblastoma. World Journal of Surgical Oncology, 18, 49.
https://doi.org/10.1186/s12957-020-01825-8
[33]  Wang, J., Yang, Y. and Li, K. (2018) Long Non-Coding RNA DANCR Aggravates Retinoblastoma through miR-34c and miR-613 by Targeting MMP-9. Journal of Cellular Physiology, 233, 6986-6995.
https://doi.org/10.1002/jcp.26621
[34]  Sheng, L., Wu, J., Gong, X., Dong, D. and Sun, X. (2018) SP1-Induced Upregulation of lncRNA PANDAR Predicts Adverse Phenotypes in Retinoblastoma and Regulates Cell Growth and Apoptosis in Vitro and in Vivo. Gene, 668, 140-145.
https://doi.org/10.1016/j.gene.2018.05.065
[35]  Wu, X.Z., Cui, H.P., Lv, H.J. and Feng, L. (2019) Knockdown of lncRNA PVT1 Inhibits Retinoblastoma Progression by Sponging miR-488-3p. Biomedicine & Pharmacotherapy, 112, Article ID: 108627.
https://doi.org/10.1016/j.biopha.2019.108627
[36]  Wang, H., Zhang, Z., Zhang, Y. and Li, L. (2022) Knockdown of the Long Non-Coding RNA TUG1 Suppresses Retinoblastoma Progression by Disrupting the Epithelial-Mesenchymal Transition. Cell Transplantation, 31, 1-10.
https://doi.org/10.1177/09636897221078026
[37]  Xiu, C., Song, R. and Jiang, J. (2021) TUG1 Promotes Retinoblastoma Progression by Sponging miR-516b-5p to Upregulate H6PD Expression. Translational Cancer Research, 10, 738-747.
https://doi.org/10.21037/tcr-19-1480
[38]  Chen, Y., Lu, B., Liu, L., Pan, X., Jiang, C. and Xu, H. (2021) Long Non-Coding RNA PROX1-AS1 Knockdown Upregulates microRNA-519d-3p to Promote Chemosensitivity of Retinoblastoma Cells via Targeting SOX2. Cell Cycle, 20, 2149-2159.
https://doi.org/10.1080/15384101.2021.1971352
[39]  Liu, S., Yan, G., Zhang, J. and Yu, L. (2018) Knockdown of Long Non-Coding RNA (lncRNA) Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Inhibits Proliferation, Migration, and Invasion and Promotes Apoptosis by Targeting miR-124 in Retinoblastoma. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 26, 581-591.
https://doi.org/10.3727/096504017X14953948675403
[40]  Zhang, H., Yang, X., Xu, Y. and Li, H. (2021) KCNQ1OT1 Regulates the Retinoblastoma Cell Proliferation, Migration, and SIRT1/JNK Signaling Pathway by Targeting miR-124/SP1 Axis. Bioscience Reports, 41, BSR20201626.
https://doi.org/10.1042/BSR20201626
[41]  Zhu, Y. and Hao, F. (2021) Knockdown of Long Non-Coding RNA HCP5 Suppresses the Malignant Behavior of Retinoblastoma by Sponging miR-3619-5p to Target HDAC9. International Journal of Molecular Medicine, 47, Article No. 74.
https://doi.org/10.3892/ijmm.2021.4907
[42]  Zhang, C., Hu, J. and Yu, Y. (2020) circRNA Is a Rising Star in Researches of Ocular Diseases. Frontiers in Cell and Developmental Biology, 8, 850.
https://doi.org/10.3389/fcell.2020.00850
[43]  Han, N., Zuo, L., Chen, H., Zhang, C., He, P. and Yan, H. (2019) Long Non-Coding RNA Homeobox A11 Antisense RNA (HOXA11-AS) Promotes Retinoblastoma Progression via Sponging miR-506-3p. OncoTargets and Therapy, 12, 3509-3517.
https://doi.org/10.2147/OTT.S195404
[44]  Zhou, H., Sun, L. and Wan, F. (2019) Molecular Mechanisms of TUG1 in the Proliferation, Apoptosis, Migration, and Invasion of Cancer Cells (Review). Oncology Letters, 18, 4393-4402.
https://doi.org/10.3892/ol.2019.10848
[45]  Huang, Y., Xue, B., Pan, J. and Shen, N. (2021) Circ-E2F3 Acts as a ceRNA for miR-204-5p to Promote Proliferation, Metastasis, and Apoptosis Inhibition in Retinoblastoma by Regulating ROCK1 Expression. Experimental and Molecular Pathology, 120, Article ID: 104637.
https://doi.org/10.1016/j.yexmp.2021.104637
[46]  Xu, L., Long, H., Zhou, B., Jiang, H. and Cai, M. (2021) CircMKLN1 Suppresses the Progression of Human Retinoblastoma by Modulation of miR-425-5p/PDCD4 Axis. Current Eye Research, 46, 1751-1761.
https://doi.org/10.1080/02713683.2021.1927110
[47]  Guo, N., Liu, X., Pant, O.P., et al. (2019) Circular RNAs: Novel Promising Biomarkers in Ocular Diseases. International Journal of Medical Sciences, 16, 513-518.
https://doi.org/10.7150/ijms.29750
[48]  Xing, L., Zhang, L., Feng, Y., Cui, Z. and Ding, L. (2018) Downregulation of Circular RNA hsa_circ_0001649 Indicates Poor Prognosis for Retinoblastoma and Regulates Cell Proliferation and Apoptosis via AKT/mTOR Signaling Pathway. Biomedicine and Pharmacotherapy, 105, 326-333.
https://doi.org/10.1016/j.biopha.2018.05.141
[49]  Du, S., Wang, S., Zhang, F. and Lv, Y. (2020) SKP2, Positively Regulated by circ_ODC1/miR-422a Axis, Promotes the Proliferation of Retinoblastoma. Journal of Cellular Biochemistry, 121, 322-331.
https://doi.org/10.1002/jcb.29177
[50]  Zhang, L., Wu, J., Li, Y., Jiang, Y., Wang, L., Chen, Y., et al. (2020) Circ-0000527 Promotes the Progression of Retinoblastoma by Regulating miR-646/LRP6 Axis. Cancer Cell International, 20, 301.
https://doi.org/10.1186/s12935-020-01396-4
[51]  Yu, B., Zhao, J. and Dong, Y. (2021) Circ_0000527 Promotes Retinoblastoma Progression through Modulating miR-98-5p/XIAP Pathway. Current Eye Research, 46, 1414-1423.
https://doi.org/10.1080/02713683.2021.1891255
[52]  Jiang, Y., Xiao, F., Wang, L., Wang, T. and Chen, L. (2021) Hsa_circ_0099,198 Facilitates the Progression of Retinoblastoma by Regulating miR-1287/LRP6 Axis. Experimental Eye Research, 206, Article ID: 108529.
https://doi.org/10.1016/j.exer.2021.108529
[53]  Liu, H., et al. (2020) Circular RNA circ_0000034 Upregulates STX17 Level to Promote Human Retinoblastoma Development via Inhibiting miR-361-3p. European Review for Medical and Pharmacological Sciences, 24, 12080-12092.
[54]  Jiang, Y., Xiao, F., Wang, L., Wang, T. and Chen, L. (2021) Circular RNA has_circ_0000034 Accelerates Retinoblastoma Advancement through the miR-361-3p/ADAM19 Axis. Molecular and Cellular Biochemistry, 476, 69-80.
https://doi.org/10.1007/s11010-020-03886-5
[55]  Jiang, G., Qu, M., Kong, L., Song, X. and Jiang, S. (2022) hsa_circ_0084811 Regulates Cell Proliferation and Apoptosis in Retinoblastoma through miR-18a-5p/ miR-18b-5p/E2F5 Axis. BioMed Research International, 2022, Article ID: 6918396.
https://doi.org/10.1155/2022/6918396
[56]  Zhang, Y., Dou, X., Kong, Q., Li, Y. and Zhou, X. (2022) Circ_0075804 Promotes the Malignant Behaviors of Retinoblastoma Cells by Binding to miR-138-5p to Induce PEG10 Expression. International Ophthalmology, 42, 509-523.
https://doi.org/10.1007/s10792-021-02067-7
[57]  Wang, H., Li, M., Cui, H., Song, X. and Sha, Q. (2020) CircDHDDS/miR-361-3p/ WNT3A Axis Promotes the Development of Retinoblastoma by Regulating Proliferation, Cell Cycle, Migration, and Invasion of Retinoblastoma Cells. Neurochemical Research, 45, 2691-2702.
https://doi.org/10.1007/s11064-020-03112-0
[58]  Liu, T., Song, Z. and Gai, Y. (2018) Circular RNA circ_0001649 Acts as a Prognostic Biomarker and Inhibits NSCLC Progression via Sponging miR-331-3p and miR-338-5p. Biochemical and Biophysical Research Communications, 503, 1503-1509.
https://doi.org/10.1016/j.bbrc.2018.07.070
[59]  Zhao, W., Wang, S., Qin, T. and Wang, W. (2020) Circular RNA (circ-0075804) Promotes the Proliferation of Retinoblastoma via Combining Heterogeneous Nuclear Ribonucleoprotein K (HNRNPK) to Improve the Stability of E2F Transcription Factor 3 E2F3. Journal of Cellular Biochemistry, 121, 3516-3525.
https://doi.org/10.1002/jcb.29631
[60]  Zuo, X., Fu, C., Xie, J., Wang, X. and Yan, Z. (2022) Hsa_circ_0000527 Downregulation Suppresses the Development of Retinoblastoma by Modulating the miR-27a-3p/HDAC9 Pathway. Current Eye Research, 47, 115-126.
https://doi.org/10.1080/02713683.2021.1925697
[61]  Lyu, J., Wang, Y., Zheng, Q., Hua, P., Zhu, X., Li, J., et al. (2019) Reduction of Circular RNA Expression Associated with Human Retinoblastoma. Experimental Eye Research, 184, 278-285.
https://doi.org/10.1016/j.exer.2019.03.017
[62]  Zhang, H., Qiu, X.W., Song, Z.J., et al. (2022) CircCUL2 Suppresses Retinoblastoma Cells by Regulating miR-214-5p/E2F2 Axis. Anticancer Drugs, 33, e218-e227.
https://doi.org/10.1097/CAD.0000000000001190
[63]  Asadi, M.R., Moslehian, M.S., Sabaie, H., Sharifi-Bonab, M., Hakimi, P., Hussen, B.M., et al. (2022) circRNA-Associated CeRNAs Regulatory Axes in Retinoblastoma: A Systematic Scoping Review. Frontiers in Oncology, 12, Article ID: 910470.
https://doi.org/10.3389/fonc.2022.910470
[64]  Sun, J., Gan, L., Ding, J., Ma, R., Qian, J. and Xue, K. (2023) Identification of Non-Coding RNAs and Their Functional Network Associated with Optic Nerve Invasion in Retinoblastoma. Heliyon, 9, e13813.
https://doi.org/10.1016/j.heliyon.2023.e13813
[65]  Li, A., Yang, J., Zhang, T., Li, L. and Li, M. (2021) Long Non-Coding RNA TRPM2-AS Promotes the Growth, Migration, and Invasion of Retinoblastoma via miR-497/WEE1 Axis. Frontiers in Pharmacology, 12, Article ID: 592822.
https://doi.org/10.3389/fphar.2021.592822

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413