全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development and Evaluation of Stable Paracetamol Loaded Solid Dispersion with Enhanced Analgesic and Hepatoprotective Property

DOI: 10.4236/pp.2023.144010, PP. 123-143

Keywords: Paracetamol, Solid Dispersion, Dissolution, Analgesic Activity, Hepatocyte, Particle Surface Property, Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

Paracetamol (PCM) is enlisted in the WHO model list as an essential medicine for pain and palliative care, but at overdose, it causes hepatic damage. This study was designed to assess the analgesic efficacy and hepatoprotective property of a solid dispersion (SD) loaded with PCM. A number of PCM loaded formulations (PSDs) were fabricated using silica alone or in combination with polyethylene glycol and/or Na-citrate followed by in-vitro dissolution profiling. Selected PSDs with improved dissolution profile were subjected to solid-state characterization (DSC, PXRD, FTIR, and SEM), stability study along with investigation of in-vivo analgesic efficacy and effect on hepatocytes. Among these, PSD10 showed a rapid and significantly higher in-vitro drug release than pure PCM. This improvement was distinct to other PSDs also. Solid-state characterization of PSD10 authenticated the conversion of crystalline PCM to amorphous form upon formulation. Subsequent oral administration of PSD10 in Swiss albino mice showed 1.44-fold greater analgesic efficacy than pure PCM at dose 30 mg/kg. Besides, at acute toxic dose, liver histology of PSD10 mice was comparable with NC mice indicating hepatic protection upon formulation, whereas the PCM mice showed extensive hepatic necrosis which was also endorsed by significantly higher values of SGPT, SGOT, and ALP than PSD10 mice. Finally, an accelerated stability study of PSD10 performed according to the guideline of ICH noticed no remarkable deviation in its dissolution performance as well as crystalline nature. Thus, this newly developed PSD10 may be a safe and promising alternative for pain management and palliative care.

References

[1]  PubChem—Open Chemistry Database (2018) Paracetamol.
https://pubchem.ncbi.nlm.nih.gov/compound/acetaminophen
[2]  Graham, G.G., Davies, M.J., Day, R.O., Mohamudally, A. and Scott, K.F. (2013) The Modern Pharmacology of Paracetamol: Therapeutic Actions, Mechanism of Action, Metabolism, Toxicity and Recent Pharmacological Findings. Inflammopharmacology, 21, 201-232.
https://doi.org/10.1007/s10787-013-0172-x
[3]  Illangakoon, U.E., Gill, H., Shearman, G.C., Parhizkar, M., Mahalingam, S., Chatterton, N.P. and Williams, G.R. (2014) Fast Dissolving Paracetamol/Caffeine Nanofibers Prepared by Electrospinning. International Journal of Pharmaceutics, 477, 369-379.
https://doi.org/10.1016/j.ijpharm.2014.10.036
[4]  Sharma, C.V. and Mehta, V. (2014) Paracetamol: Mechanisms and Updates. Continuing Education in Anaesthesia Critical Care & Pain, 14, 153-158.
https://doi.org/10.1093/bjaceaccp/mkt049
[5]  Granberg, R.A. and Rasmuson, A.C. (1993) Solubility of Paracetamol in Pure Solvents. Journal of Chemical & Engineering Data, 44, 1391-1395.
https://doi.org/10.1021/je990124v
[6]  Gaisford, S. and Saunders, M. (2012) Essentials of Pharmaceutical Preformulation. John Wiley & Sons, West Sussex.
https://doi.org/10.1002/9781118423226
[7]  Forrest, J.A.H., Clements, J.A. and Prescott, L.F. (1982) Clinical Pharmacokinetics of Paracetamol. Clinical Pharmacokinetics, 7, 93-107.
https://doi.org/10.2165/00003088-198207020-00001
[8]  Hinson, J.A., Pohl, L.R., Monks, T.J. and Gillette, J.R. (1981) Acetaminophen-Induced Hepatotoxicity. Life Sciences, 29, 107-116.
https://doi.org/10.1016/0024-3205(81)90278-2
[9]  James, L.P., Mayeux, P.R. and Hinson, J.A. (2003) Acetaminophen-Induced Hepatotoxicity. Drug Metabolism and Disposition, 31, 1499-1506.
https://doi.org/10.1124/dmd.31.12.1499
[10]  Yoon, E., Babar, A., Choudhary, M., Kutner, M. and Pyrsopoulos, N. (2016) Acetaminophen-Induced Hepatotoxicity: A Comprehensive Update. Journal of Clinical and Translational Hepatology, 4, 131-142.
https://doi.org/10.14218/JCTH.2015.00052
[11]  Lee, W.M. (2017) Acetaminophen (APAP) Hepatotoxicity—Isn’t It Time for APAP to Go Away? Journal of Hepatology, 67, 1324-1331.
https://doi.org/10.1016/j.jhep.2017.07.005
[12]  Biazar, E., Rezayat, S.M., Montazeri, N., Pourshamsian, K., Zeinali, R., Asefnejad, A., Rahimi, M., Zadehzare, M., Mahmoudi, M., Mazinani, R. and Ziaei, M. (2010) The Effect of Acetaminophen Nanoparticles on Liver Toxicity in a Rat Model. International Journal of Nanomedicine, 5, 197-201.
https://doi.org/10.2147/IJN.S5894
[13]  Yang, F., Medik, Y., Li, L., Tian, X., Fu, D., Brouwer, K.I., Wagner, K., Sun, B., Sendi, H., Mi, Y. and Wang, A.Z. (2020) Nanoparticle Drug Delivery Can Reduce the Hepatotoxicity of Therapeutic Cargo. Small, 16, e1906360.
https://doi.org/10.1002/smll.201906360
[14]  Ebrahimi, A., Saffari, M., Dehghani, F. and Langrish, T. (2016) Incorporation of Acetaminophen as an Active Pharmaceutical Ingredient into Porous Lactose. International Journal of Pharmaceutics, 499, 217-227.
https://doi.org/10.1016/j.ijpharm.2016.01.007
[15]  Lloyd, G.R., Craig, D.Q.M. and Smith, A. (1999) A Calorimetric Investigation into the Interaction between Paracetamol and Polyethlene Glycol 4000 in Physical Mixes and Solid Dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 48, 59-65.
https://doi.org/10.1016/S0939-6411(99)00022-3
[16]  Gryczke, S., Qi, A., Belton, P. and Craig, D.Q.M. (2008) Characterization of Solid Dispersions of Paracetamol and Eudragit® Prepared by Hot-Melt Extrusion Using Thermal, Microthermal and Spectroscopic Analysis. International Journal of Pharmaceuti, 354, 158-167.
https://doi.org/10.1016/j.ijpharm.2007.11.048
[17]  Sahoo, C.K., Satyanarayana, K. and Ramana, D.V. (2017) Formulation and Evaluation of Solid Dispersion Containing Paracetamol. International Journal of Pharmaceutical and Clinical Research, 3, 722-726.
[18]  Singh, A., Sharma, P.K., Meher, J.G. and Malviya, R. (2011) Evaluation of Enhancement of Solubility of Paracetamol by Solid Dispersion Technique Using Different Polymers Concentration. Asian Journal of Pharmaceutical and Clinical Research, 4, 117-119.
[19]  Kaialy, W., Larhrib, H., Chikwanha, B., Shojaee, S. and Nokhodchi, A. (2014) An approach to Engineer Paracetamol Crystals by Antisolvent Crystallization Technique in Presence of Various Additives for Direct Compression. International Journal of Pharmaceutics, 464, 53-64.
https://doi.org/10.1016/j.ijpharm.2014.01.026
[20]  Al-Hamidi, H., Edwards, A.A., Mohammad, M.A. and Nokhodchi, A. (2010) To Enhance Dissolution Rate of Poorly Water-Soluble Drugs: Glucosamine Hydrochloride as a Potential Carrier in Solid Dispersion Formulations. Colloids and Surfaces B: Biointerfaces, 76, 170-178.
https://doi.org/10.1016/j.colsurfb.2009.10.030
[21]  Bhusnure, O.G., Kazi, P.A., Gholve, S.B., Ansari, M.M.A.W. and Kazi, S.N. (2014) Solid Dispersion: An Ever Green Method for Solubility Enhancement of Poorly Water Soluble Drugs. International Journal of Research in Pharmacy and Chemistry, 4, 906-918.
[22]  Sareen, S., Joseph, L. and Mathew, G. (2012) Improvement in Solubility of Poor Water-Soluble Drugs by Solid Dispersion. International Journal of Pharmaceutical Investigation, 2, 12-17.
https://doi.org/10.4103/2230-973X.96921
[23]  Sridhar, I., Doshi, A., Joshi, B., Wankhede, V. and Doshi, J. (2013) Solid Dispersions: An Approach to Enhance Solubility of Poorly Water Soluble Drug. Journal of Scientific and Innovative Research, 2, 685-694.
[24]  Thenmozhi, K. and Yoo, Y.J. (2017) Enhanced Solubility of Piperine Using Hydrophilic Carrier-Based Potent Solid Dispersion Systems. Drug Development and Industrial Pharmacy, 43, 1501-1509.
https://doi.org/10.1080/03639045.2017.1321658
[25]  Huang, Y. and Dai, W.G. (2017) Fundamental Aspects of Solid Dispersion Technology for Poorly Soluble Drugs. Acta Pharmaceutica Sinica B, 4, 18-25.
https://doi.org/10.1016/j.apsb.2013.11.001
[26]  Mouffok, M., Mesli, A., Abdelmalek, I. and Gontier, E. (2016) Effect of the Formulation Parameters on the Encapsulation Efficiency and Release Behavior of p-Aminobenzoic Acid-Loaded Ethylcellulose Microspheres. Journal of the Serbian Chemical Society, 81, 1183-1198.
https://doi.org/10.2298/JSC160308068M
[27]  Mauger, J., Ballard, J., Brockson, R., De, S., Gray, V. and Robinson, D. (2003) Intrinsic Dissolution Performance Testing of the USP Dissolution Apparatus 2 (Rotating Paddle) Using Modified Salicylic Acid Calibrator Tablets: Proof of Principle. Dissolution Technologies, 10, 6-15.
https://doi.org/10.14227/DT100303P6
[28]  Barman, R.K., Iwao, Y., Funakoshi, Y., Ranneh, A.H., Noguchi, S., Wahed, M.I.I. and Itai, S. (2014) Development of Highly Stable Nifedipine Solid-Lipid Nanoparticles. Chemical and Pharmaceutical Bulletin, 62, 399-406.
https://doi.org/10.1248/cpb.c13-00684
[29]  (2019) Codex Rules and Guidelines for Research: Animal Research.
https://www.codex.uu.se/?languageId=1
[30]  Gawade, S.P. (2014) Acetic Acid Induced Painful Endogenous Infliction in Writhing Test on Mice. Journal of Pharmacology and Pharmacotherapeutics, 3, 348.
[31]  Kane, A.E., Mitchell, S.J., Mach, J., Huizer-Pajkos, A., McKenzie, C., Jones, B., Cogger V., Le Couteur, D.G., de Cabo, R. and Hilmer, S.N. (2016) Acetaminophen Hepatotoxicity in Mice: Effect of Age, Frailty and Exposure Type. Experimental Gerontolog, 73, 95-106.
https://doi.org/10.1016/j.exger.2015.11.013
[32]  (2021) Stability Testing of New Drug Substances and Products Q1A (R2).
https://database.ich.org/sites/default/files/Q1A%28R2%29%20Guideline.pdf
[33]  (2021) WHO Technical Report Series, No. 863, 1996.
https://www.paho.org/hq/dmdocuments/2008/6_Annex_5_report_34.pdf
[34]  Takahashi, H., Chen, R., Okamoto, H. and Danjo, K. (2005) Acetaminophen Particle Design Using Chitosan and a Spray-Drying Technique. Chemical and Pharmaceutical Bulletin, 53, 37-41.
https://doi.org/10.1248/cpb.53.37
[35]  Meyer, B. and Stroyer-Hansen, T. (1972) Infrared Spectra of S4. The Journal of Physical Chemistry A, 6, 3968-3969.
https://doi.org/10.1021/j100670a013
[36]  Shameli, K., Ahmad, M.B., Jazayeri, S.D., Sedaghat, S., Shabanzadeh, P., Jahangirian, H., Mahdavi, M. and Abdollahi, Y. (2012) Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method. International Journal of Molecular Science, 13, 6639-6650.
https://doi.org/10.3390/ijms13066639
[37]  Lakshmanan, B. (1968) Infrared Absorption Spectrum of Sodium Citrate. Journal of the Indian Institute of Science, 39, 108-120.
[38]  Ghosh, M.K., Wahed, M.I.I., Ali, M.A. and Barman, R.K. (2019) Formulation and Characterization of Fenofibrate Loaded Solid Dispersion with Enhanced Dissolution Profile. Pharmacology & Pharmacy, 10, 343-355.
https://doi.org/10.4236/pp.2019.107028
[39]  Karavas, E., Georgarakis, E., Sigalas, M.P., Avgoustakis, K. and Bikiaris, D. (2007) Investigation of the Release Mechanism of a Sparingly Water-Soluble Drug from Solid Dispersions in Hydrophilic Carriers Based on Physical State of Drug, Particle Size Distribution and Drug-Polymer Interactions. European Journal of Pharmaceutics and Biopharmaceutics, 66, 334-347.
https://doi.org/10.1016/j.ejpb.2006.11.020
[40]  Maheshwari, R.K. and Jagwani, Y. (2011) Mixed Hydrotropy: Novel Science of Solubility Enhancement. Indian Journal of Pharmaceutical Science, 73, 179-183.
https://doi.org/10.4103/0250-474X.91585
[41]  Das, S., Roy, P., Auddy, R.G. and Mukherjee, A. (2011) Silymarin Nanoparticle Prevents Paracetamol-Induced Hepatotoxicity. International Journal of Nanomedicine, 6, 1291-1301.
https://doi.org/10.2147/IJN.S15160
[42]  Kelava, T., Cavar, I. and Culo, F. (2010) Influence of Small Doses of Various Drug Vehicles on Acetaminophen-Induced Liver Injury. Canadian Journal of Physiology and Pharmacology, 88, 960-967.
https://doi.org/10.1139/Y10-065
[43]  Ghosh, M.K., Wahed, M.I.I., Khan, R.I., Habib, A. and Barman, R.K. (2020) Pharmacological Screening of Fenofibrate Loaded Solid Dispersion in Fructose Induced Diabetic Rat. Journal of Pharmacy and Pharmacology, 72, 909-915.
https://doi.org/10.1111/jphp.13267
[44]  Kushida, I., Ichikawa, M. and Asakawa, N. (2002) Improvement of Dissolution and Oral Absorption of ER-34122, a Poorly Water-Soluble Dual 5-Lipoxygenase/Cyclooxygenase Inhibitor with Anti-Inflammatory Activity by Preparing Solid Dispersion. Journal of Pharmaceutical Sciences, 91, 258-266.
https://doi.org/10.1002/jps.10020
[45]  Law, S.L., Lo, W.Y., Lin, F.M. and Chaing, C.H. (1992) Dissolution and Absorption of Nifedipine in Polyethylene Glycol Solid Dispersion Containing Phosphatidylcholine. International Journal of Pharmaceutics, 84, 161-166.
https://doi.org/10.1016/0378-5173(92)90056-8
[46]  Laitinen, R., Lobmann, K., Strachan, C.J., Grohganz, H. and Rades, T. (2013) Emerging Trends in the Stabilization of Amorphous Drugs. International Journal of Pharmaceuti, 453, 65-79.
https://doi.org/10.1016/j.ijpharm.2012.04.066
[47]  Bhattacharya, S. and Suryanarayanan, R. (2009) Local Mobility in Amorphous Pharmaceuticals-Characterization and Implications on Stability. Journal of Pharmaceutical Sciences, 98, 2935-2953.
https://doi.org/10.1002/jps.21728
[48]  Lehmkemper, K., Kyeremateng, S.O., Heinzerling, O., Degenhardt, M. and Sadowski, G. (2017) Long-Term Physical Stability of PVP- and PVPVA-Amorphous Solid Dispersions. Molecular Pharmaceutics, 14, 157-171.
https://doi.org/10.1021/acs.molpharmaceut.6b00763

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133