In this
note, we first derive an exponential generating function of the alternating run
polynomials. We then deduce an explicit formula of the alternating run
polynomials in terms of the partial Bell polynomials.
References
[1]
André, D. (1884) étude sur les maxima, minima et séquences des permutations. Annales Scientifiques de L’école Normale Supérieure, 3, 121-134. https://doi.org/10.24033/asens.235
[2]
Bóna, M. and Ehrenborg, R. (2000) A Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs. Journal of Combinatorial Theory, Series A, 90, 293-303. https://doi.org/10.1006/jcta.1999.3040
[3]
Bóna, M. (2012) Combinatorics of Permutations. CRC Press, Boca Raton.
[4]
Ma, S.-M., Ma, J. and Yeh, Y.-N. (2010) David-Barton Type Identities and the Alternating Run Polynomials. Advances in Applied Mathematics, 114, 101978. https://doi.org/10.1016/j.aam.2019.101978
[5]
Carlitz, L. (1978) Enumeration of Permutations by Sequences. Fibonacci Quart, 16, 259-268.
[6]
Carlitz, L. (1980) The Number of Permutations with a Given Number of Sequences. Fibonacci Quart, 18, 347-352.
[7]
Carlitz, L. (1981) Enumeration of Permutations by Sequences II. Fibonacci Quart, 19, 398-406.
[8]
Qi, F. and Zheng, M.M. (2015) Explicit Expressions for a Family of the Bell Polynomials and Applications. Applied Mathematics and Computation, 258, 597-607. https://doi.org/10.1016/j.amc.2015.02.027
[9]
Qi, F., Shi, X.T., Liu, F.F. and Guo, B.-N. (2017) Several Formulas for Special Values of the Bell Polynomials of the Second Kind and Applications. Journal of Applied Analysis and Computation, 7, 857-871.
[10]
Qi, F., Niu, D.-W., Lim, D. and Guo, B.-N. (2020) Closed Formulas and Identities for the Bell Polynomials and Falling Factorials. Contributions to Discrete Mathematics, 15, 163-174.