全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Groundwater Quality for Drinking and Irrigation Uses in the Samba Dia Area, Central West Senegal

DOI: 10.4236/jwarp.2023.154008, PP. 130-148

Keywords: Samba Dia, Groundwater, Hydrogeochemistry, Suitability, Drinking, Irrigation

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the Sahelian zone in Africa, groundwater is the main source of drinking water for domestic, industrial, and agricultural uses. The groundwater of the Samba Dia sandy aquifer was assessed for understanding processes controlling the hydrogeochemistry and its drinking and irrigation suitability, on the basis of various water quality parameters. For the present study, thirty-three groundwater samples were collected in wells of the study area during the dry season in March 2021 and subjected to analysis for chemical characteristics (major ions), pH, electrical conductivity (EC), and total dissolved solids (TDS). Gibbs plot depicts that the process of ionic exchange is mainly due to the dissolution of water-rock interaction. The Piper diagram indicates a largely dominant sodium chloride facies with 70% of the groundwater samples followed by calcium chloride facies (18%) than calcium bicarbonate facies (12%). Analytical results of hydrogeochemical parameters of groundwater samples reveal that the majority of samples are within the World Health Organization safety range for drinking water. TDS and electrical conductivity (EC) values of groundwater indicate that 70% and 61% are safe for drinking water, respectively. Sodium percentage (% Na), Sodium Adsorption Ratio (SAR) values, and Ca/Mg ratio were calculated and compared with the standard guideline values recommended by the World Health Organization and agricultural water standards. This study shows that the groundwater in the area is mostly chemically suitable for drinking and irrigation, although some wells at the edge of the area exhibit signs of progressive salinization and traces of pollution.

References

[1]  Faye, S., Faye, S.C., Ndoye, S. and Faye, A. (2003) Hydrogeochemistry of the Saloum (Senegal) Superficial Coastal Aquifer. Environmental Geology, 44, 127-136.
https://doi.org/10.1007/s00254-002-0749-y
[2]  Re, V., Faye, S.C., Faye, S., Gaye, C.B., Sacchi, E. and Gian, M.Z. (2011) Water Quality Decline in Coastal Aquifers under Anthropic Pressure: The Case of a Suburban Area of Dakar (Senegal). Environmental Monitoring and Assessment, 172, 605-622.
https://doi.org/10.1007/s10661-010-1359-x
[3]  Diédhiou, M., Faye, S.C., Diouf, O.C., Faye, S. and Wohnlich, S. (2014) Groundwater Quality Assessment in a Coastal Sand Aquifer: Implications for Drinking Water and Agricultural Use. Research Journal of Environmental and Earth Sciences, 8, 585-594.
https://doi.org/10.19026/rjaset.8.1009
[4]  Marius, C. (1975) Evolution des sols dans deux chrono-séquences de l’estuaire du Saloum (Sénégal). Rapport, ORSTOM, Dakar.
[5]  Sarr, R. (1982) Etude géologique et hydrogéologique de la région de Joal-Fadiouth (Sénégal). Thèse 3ème Cycle, Univ. Dakar, Dakar, 166 p.
[6]  Travi, Y. (1984) Origine des fortes teneurs en fluor des eaux souterraines de la nappe paléocène de la région de Mbour (Sénégal): Le role de l’ion magnésium. Compte Rendu Académie Sciences Paris, 298, 313-316.
[7]  ANSD (2013) Recensement Général de la Population et de l’Habitat, de l’Agriculture et de l’Elevage. Rapport définitif, Ministère de l’Economie, des Finances et du Plan du Sénégal, Dakar, 200.
[8]  Plaud, M. (1967) Etude des nappes aquifères superficielles de la région de Joal Fadiouth. Rapport, BRGM, Dakar.
[9]  Leroux, M. (1995) La dynamique de la grande sécheresse sahélienne/Dynamics of the Great Sahelian Drought. Revue de Géographie de Lyon, 70, 223-232.
https://doi.org/10.3406/geoca.1995.4216
[10]  Gaye, A.T., and Sylla, M.B. (2008) Scenarios climatiques au Sénégal. Rapport, Laboratoire de Physique de l’atmosphère et de l’océan S F (LPAO-SF), Ecole Supérieure Polytechnique Université Cheikh Anta Diop, Dakar.
[11]  WHO (2004) Guidelines for Drinking Water Quality. 3rd Edition, WHO, Geneva.
[12]  WHO (2011) Guidelines for Drinking-Water Quality. 4th Edition, WHO, Geneva.
[13]  Tine, A.K., Ba, M.I., Gladima, A.S., Essouli, O.F., Faye, A. and Sarr, B. (2011) Réactualisation de la situation Hydrogéologique des aquifères du Maastrichtien et du Paléocène de la Région de Mbour, Sénégal. Journal des Sciences et Technologies, 9, 23-32.
[14]  Bellion, Y.J.C. (1987) Histoire géodynamique post-paléozoique de l’Afrique de l’Ouest d’après l’étude de quelques bassins sédimentaires (Sénégal, Taoudéni, Tullemmeden, Tchad). Thèse ès Sciences, Université d’Avignon et des pays du Vaucluse, Avignon, 296 p.
[15]  Sarr, R. (1995) Etude biostratigraphique et paléoenvironnemental des séries de l’age Crétacé Terminal à Eocène moyen du Sénégal Occidental. Systématique et migration des ostracodes. Thèse d’Etat en sciences, Université Cheikh Anta Diop de Dakar, Dakar, 335p + annexes.
[16]  Pitaud, G. (1980) Etude hydrogéologique des calcaires paléocènes de Mbour. Evaluation des ressources en eau et des possibilités d’exploitation. Direction des études hydrauliques-Ministère de l’équipement. Rapport de synthèse 01-80-HG-DEH, Dakar, 126 p.
[17]  Tessier, F. (1950) Contribution à la stratigraphie et à la Paléontologie de la partie Ouest du Sénégal (Crétacé et Tertiaire). Thèse es Sciences Nat. Marseille. TOME 1, 228 p.
[18]  Depagne, J. and Mossu, H. (1967) Notice explicative de la carte hydrogéologique du Sénégal au 1/500000 et de la carte hydrochimique au 1/1000000. BRGM, Dakar.
[19]  Simler, R. (2009) DIAGRAMMES. Laboratoire d’Hydrogéologie d’Avignon, Avignon.
[20]  Gibbs, R. (1970) Mechanism Controlling World River Water Chemistry. Science, 170, 1088-1090.
https://doi.org/10.1126/science.170.3962.1088
[21]  Gibbs, R. (1971) Mechanism Controlling World River Water Chemistry: Evaporation-Crystallization Process. Science, 172, 871-872.
https://doi.org/10.1126/science.172.3985.871
[22]  Subba Rao, N. (1998) Groundwater Quality in Crystalline Terrain of Guntur District, Andhra Pradesh, Visakhapatnam. Journal of Science, 2, 51-54.
[23]  Piper, A.M. (1944) A Graphical Procedure in the Geochemical Interpretation of Water Analysis. Transactions, American Geophysical Union, 25, 914-928.
https://doi.org/10.1029/TR025i006p00914
[24]  Dib, I. (2010) L’impact de l’activité agricole et urbaine sur la qualité des eaux souterraines de la Plaine de GADAINE-AIN YAGHOUT (Est Algerie). Magister Thesis, Universite de Batna 2, Batna.
[25]  Scholler, H. (1956) Geochimie des eaux souterraines: Application aux eaux de gisement de petrole. Paris, 213 p.
[26]  Davis, S.N and De Wiest, R.J.M. (1966) Hydrogeology. Vol. 463, John Wiley & Sons, New York.
[27]  Dahariya, N., Ramteke, S., Sahu, B. and Patel, K. (2016) Urban Groundwater Quality in India. Journal of Environmental Protection, 7, 961-971.
https://doi.org/10.4236/jep.2016.76085
[28]  Craun, G., Greathouse, D.G. and Gunderson, D.H. (1981) Methaemoglobin Levels in Young Children Consuming High Nitrate Well Water in the United States. International Journal of Epidemiology, 10, 309-317.
https://doi.org/10.1093/ije/10.4.309
[29]  Gupta, S.K., Gupta, R.C., Seth, A.K., Gupta, A.B., Bassin, J.K. and Gupta, A. (1999) Adaptation of Cytochrome-b5 Reductase Activity and Methemoglobinemia in Areas with a High Nitrate Concentration in Drinking Water. Bulletin of the World Health Organization, 77, 749-753.
[30]  Knobeloch, L.B., Salna, A., Hogan, J., Postle and Anderson, H. (2000) Blue Babies and Nitrate-Contaminated Well Water. Environmental Health Perspectives, 108, 675-678.
https://doi.org/10.1289/ehp.00108675
[31]  Zeman, C.L., Kross, B. and Vlad, M. (2002) A Nested Case-Control Study of Methemoglobinemia Risk Factors in Children of Transylvania, Romania. Environmental Health Perspectives, 110, 817-822.
https://doi.org/10.1289/ehp.02110817
[32]  Subramani, T., Elango, L. and Damodarasamy, S.R. (2005) Groundwater Quality and Its Suitability for Drinking and Agricultural Use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47, 1099-1110.
https://doi.org/10.1007/s00254-005-1243-0
[33]  Jalali, M. (2009) Geochemistry Characterization of Groundwater in an Agricultural Area of Razan, Hamadan, Iran. Environmental Geology, 56, 1479-1488.
https://doi.org/10.1007/s00254-008-1245-9
[34]  Jalali, M. (2011) Nitrate Pollution of Groundwater in Toyserkan, Western Iran. Environmental Earth Sciences, 62, 907-913.
https://doi.org/10.1007/s12665-010-0576-5
[35]  Richards, L.A. (1954) Diagnosis and Improvement of Saline and Alkali Soils. U.S. Department of Agriculture Handbook 60. U.S. Government Printing Office, Washington DC.
[36]  Joshi, D.M., Kumar, A and Agrawal, N. (2009) Assessment of the Irrigation Water Quality of River Ganga in Haridwar District India. Journal of Chemistry, 2, 285-292.
[37]  Wilcox, L.V. (1955) Classification and Use of Irrigation Water. U.S Department of Agriculture, Washington DC, 969.
[38]  Kaur, R. and Singh, R.V. (2011) Assessment for Different Groundwater Quality Parameters for Irrigation Purposes in Bikaner City, Rajasthan. Journal of Applied Sciences in Environmental Sanitation, 6, 385-392.
[39]  Jalali, M. (2011) Hydrogeochemistry of Groundwater and Its Suitability for Drinking and Agriculture Use in Nahavand, Western Iran. Natural Resources Research, 20, 65-73.
https://doi.org/10.1007/s11053-010-9131-z

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413