全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大鲵酶解液脱苦脱腥工艺研究
Study on Debittering and Deodoring of Enzymatic Hydrolysates of Andrias davidianus

DOI: 10.12677/HJMCe.2023.112008, PP. 50-59

Keywords: 大鲵酶解液,脱苦脱腥,活性炭,羟基化多壁碳纳米管,β-环糊精
Hydrolysates of Andrias davidianus
, Debittering and Deodorization, Active Carbon, Hydroxylated Multi Walled Carbon Nanotubes, β-Cyclodextrin

Full-Text   Cite this paper   Add to My Lib

Abstract:

大鲵具有良好的食用及药用价值,具有极高的研究价值。为促进大鲵蛋白产品的进一步开发,试验采用活性炭吸附法、羟基化多壁碳纳米管吸附法和β-环糊精包埋法对大鲵酶解液进行味道去除,比较三种方法的脱腥脱苦效果,再通过单因素实验法和正交试验法优化脱腥脱苦工艺。试验表明,活性炭吸附法对蛋白质的损耗较羟基化多壁碳纳米管吸附法小,但前者脱苦效果不如后者;β-环糊精包埋法脱苦效果不明显,但其脱腥效果较好。活性炭吸附法和β-环糊精包埋法联合脱苦脱腥效果最佳:先向0.8 g大鲵酶解液的溶液中添加0.5 g β-环糊精,在温度为35℃,pH为7.0的条件下包埋0.75 h,然后添加1.5 g活性炭,在温度为20℃,pH为3.5的条件下吸附3.0 h。该条件下测试电子舌口感度为1.9,蛋白质回收率为87.53%,三甲胺去除率为89.3%。
Andrias davidianus has a good edible and medicinal value, with very high research value. In order to promote the further development of Andrias davidianus protein products, in this research, active carbon, hydroxylated multi walled carbon nanotubes and β-cyclodextrin were used to remove the taste of Andrias davidianus peptide, and the three methods were compared for the removal effect of the bitterness and fishy smell. Then, one-factor experiment and orthogonal experiment were per-formed for the investigation of the optimum operation conditions. The results showed that the loss of protein by active carbon adsorption was less than that by hydroxylated multi walled carbon nanotube adsorption, but active carbon was much more efficient for the removal of the bitterness taste than hydroxylated multi walled carbon nanotube. The debittering effect of β-cyclodextrin was not obvious, but its deodorization effect was better. Using active carbon coupling with β-cyclodextrin was much more efficient. The optimal condition was that the reaction occurred first with adding 0.5 g β-cyclodextrin at 35?C and pH 7.0 for 0.75 hin to 0.8 g hydrolysates of Andrias davidianus, then with 1.5 g active carbon at 20?C and pH 3.5 for 3.0 h. Under the optimal condition, the hydrolysates bitterness value of electronic tongue was 1.9, and the protein recovery was 87.53%, and the removal rate of trimethylamine was 89.3%.

References

[1]  Zhou, Z.Y., Geng, Y., Liu, X.X., et al. (2013) Characterization of a Ranavirus Isolated from the Chinese Giant Salaman-der (Andrias davidianus, Blanchard, 1871) in China. Aquaculture, 384-387, 66-73.
https://doi.org/10.1016/j.aquaculture.2012.12.018
[2]  Yan,M., Tian, H.F., Hu, Q.M. and Xiao, H.B. (2018) Mo-lecular Cloning of Cathelicidin-Like cDNA from Andrias davidianus. Russian Journal of Genetics, 54, 75-82.
https://doi.org/10.1134/S102279541801012X
[3]  Ramadhan, A.H., Pembe, W.M., Omar, K.A., et al. (2017) Characterization of Antioxidant Activity of Peptide Fractions from Chinese Giant Salamander (Andrias davidianus) Pro-teinhy Drolysate. Journal of Global Innovations in Agricultural and Social Sciences, 5, 14-19.
https://doi.org/10.22194/JGIASS/5.1.776
[4]  Zhu, W.M., Ji, Y., Wang, Y., et al. (2018) Structural Characteriza-tion and in Vitro Antioxidant Activities of Chondroitin Sulfate Purified from Andrias davidianus Cartilage. Carbohydrate Polymers, 196, 398-404.
https://doi.org/10.1016/j.carbpol.2018.05.047
[5]  Jiang, N., Fan, Y.D., Zhou, Y., et al. (2021) The Immune Sys-tem and the Antiviral Responses in Chinese Giant Salamander, Andriasdavidianus. Frontiers in Immunology, 12, Article 718627.
https://doi.org/10.3389/fimmu.2021.718627
[6]  Zhou, M., Ren, G.Y., Zhang, B., et al. (2022) Screening and Identification of a Novel Antidiabetic Peptide from Collagen Hydrolysates of Chinese Giant Salamander Skin: Net-work Pharmacology, Inhibition Kinetics and Protection of IR-HepG2 Cells. Food & Function, 13, 3329-3342.
https://doi.org/10.1039/D1FO03527D
[7]  He, D., Zhu, W.M., Zeng, W., et al. (2018) Nutritional and Medicinal Characteristics of Chinese Giant Salamander (Andrias davidianus) for Applications in Healthcare Industry by Artificial Cultivation: A Review. Food Science and Human Wellness, 7, 1-10.
https://doi.org/10.1039/D1FO03527D
[8]  Chung, H.Y., Yeung, C.W., Kim, J.-S. and Chen, F. (2006) Static Headspace Analysis-Olfactometry (SHA-O) of Odor Impact Components in Salted-Dried White Herring (Ilisha elonga-ta). Food Chemistry, 104, 842-851.
https://doi.org/10.1016/j.foodchem.2006.08.036
[9]  曹川, 朱文广, 包建强. 贻贝肉酶解液的脱苦脱腥研究[J]. 江苏农业科学, 2012, 40(2): 216-218.
[10]  黄薇, 邓尚贵, 唐艳, 等. 鳕鱼皮复合肽脱腥脱苦工艺研究[J]. 食品工业, 2012, 33(11): 99-102.
[11]  李治龙, 刘新华, 赵晨霞, 等. 活性炭在初步纯化玉米肽中的应用研究[J]. 粮食与饲料工业, 2010(11): 37-39.
[12]  陈锦文, 崔燕芒, 赵燕. 三甲胺、二甲胺及氧化三甲胺含量测定方法的研究进展[J]. 西北药学杂志, 2015, 30(2): 216-219.
[13]  韩书霞, 林晶, 王德红. 粉剂氯化胆碱中三甲胺含量的测定[J]. 化工标准.计量.质量, 2005(5): 39-42.
[14]  Anthony, B., Lyra, C., Thomas, J., et al. (2011) Bicinchoninic Acid (BCA) Assay in Low Volume. Analytical Biochemistry, 410, 310-312.
https://doi.org/10.1016/j.ab.2010.11.015
[15]  赵李妮, 蒋璐, 张宇, 等. 平颏海蛇酶解液脱腥去苦工艺研究[J]. 食品工业, 2016, 37(1): 32-35.
[16]  苏晓濛, 汤昊洋, 吕伟, 等. 活性炭吸附法在挥发性有机物治理中的应用研究进展[J]. 化工管理, 2022(6): 38-40.
[17]  Kang, S.-Z., Yin, D.-E., Li, X.Q. and Mu, J. (2011) A Facile Preparation of Multiwalled Carbon Nanotubes Modified with Hydroxyl Groups and Their High Dispersibility in Ethanol. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 384, 363-367.
https://doi.org/10.1016/j.colsurfa.2011.04.036
[18]  战旭梅, 刘萍, 祁兴普, 等. β-环糊精包埋对玉米活性肽脱苦效果的工艺研究[J]. 食品科技, 2020, 45(10): 253-260.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413