全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

LncRNAs在皮肤黑色素瘤中的生物学功能和潜在临床应用
Biological Functions and Potential Clinical Applications of LncRNAs in Cutaneous Melanoma

DOI: 10.12677/WJCR.2023.132013, PP. 85-96

Keywords: lncRNA,黑色素瘤,生物标志物,靶向治疗
LncRNA
, Melanoma, Biomarkers, Targeted Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

皮肤黑色素瘤是具有侵袭性的一种皮肤癌,其发病率逐年越来越高。尽管免疫疗法和靶向药物取得了成功,但大多数患者在治疗后出现疾病复发并死于疾病。非编码RNA (ncRNAs)已成为细胞信号传导和相关人类疾病的重要调节因子,长链非编码RNA (lncRNAs)是一类新的ncRNA,参与了细胞生长、侵袭和其他重要细胞功能的(表观遗传)调控。随着对lncRNAs认识的加深,研究发现其在包括黑色素瘤在内的多种癌症疾病中有特征性的表达方式,与肿瘤的生长和进展有关,更多的努力被用于分析所使用的潜在分子机制。我们广泛查阅国内外有关LncRNAs在皮肤黑色素瘤中相关的生物学功能研究文献,并进行总结讨论其潜在临床应用意义,这为皮肤黑色素瘤新的治疗方法和靶向RNA药物提供了新的理论基础。
Cutaneous melanoma is an aggressive type of skin cancer, and its incidence is increasing year by year. Despite the success of immunotherapy and targeted drugs, a significant number of patients relapse and die. Noncoding RNAs (ncRNAs) have become important regulators of cell signaling and disease, and long noncoding RNAs (lncRNAs) are a new class of ncRNAs involved in the regulation of cell growth, invasion and other important cellular functions. With the understanding of lncRNAs, research has found that they are expressed in characteristic ways in a variety of cancer diseases, including melanoma, and are associated with tumor growth and progression. We have extensively reviewed the domestic and foreign literature on the biological function of LncRNAs in cutaneous melanoma, and summarized and discussed their potential clinical application significance, which provides a new theoretical basis for new treatments and targeted RNA drugs for cutaneous melanoma.

References

[1]  Ferlay, J., Colombet, M., Soerjomataram, I., et al. (2021) Cancer Statistics for the Year 2020: An Overview. International Journal of Cancer, 149, 778-789.
https://doi.org/10.1002/ijc.33588
[2]  Leonardi, G.C., Falzone, L., Salemi, R., et al. (2018) Cutaneous Melanoma: From Pathogenesis to Therapy (Review). International Journal of Oncology, 52, 1071-1080.
https://doi.Org/10.3892/Ijo.2018.4287
[3]  Lee, C.-S., Thomas, C.M. and Ng, K.E. (2017) An Overview of the Changing Landscape of Treatment for Advanced Melanoma. Pharmacotherapy, 37, 319-333.
https://doi.org/10.1002/phar.1895
[4]  da Silveira Nogueira Lima, J.P., Georgieva, M., Haaland, B. and de Lima Lopes, G. (2017) A Systematic Review and Network Meta-Analysis of Immunotherapy and Targeted Therapy for Advanced Melanoma. Cancer Medicine, 6, 1143-1153.
https://doi.org/10.1002/cam4.1001
[5]  Jenkins, R.W. and Fisher, D.E. (2021) Treatment of Advanced Melanoma in 2020 and beyond. Journal of Investigative Dermatology, 141, 23-31.
https://doi.org/10.1016/j.jid.2020.03.943
[6]  Park, E.-G., Pyo, S.-J., Cui, Y., Yoon, S.-H. and Nam, J.-W. (2022) Tumor Immune Microenvironment lncRNAs. Briefings in Bioinformatics, 23, Article ID: Bbab504.
https://doi.org/10.1093/bib/bbab504
[7]  Yang, J., Liu, F., Wang, Y., Qu, L. and Lin, A. (2022) LncRNAs in Tumor Metabolic Reprogramming and Immune Microenvironment Remodeling. Cancer Letters, 543, Article ID: 215798.
https://doi.org/10.1016/j.canlet.2022.215798
[8]  Lin, W., Zhou, Q., Wang, C.Q., et al. (2020) LncRNAs Regulate Metabolism in Cancer. International Journal of Biological Sciences, 16, 1194-1206.
https://doi.org/10.7150/ijbs.40769
[9]  Ebrahimi, N., Parkhideh, S., Samizade, S., et al. (2022) Crosstalk between lncRNAs in the Apoptotic Pathway and Therapeutic Targets in Cancer. Cytokine & Growth Factor Reviews, 65, 61-74.
https://doi.org/10.1016/j.cytogfr.2022.04.003
[10]  Nojima, T. and Proudfoot, N.J. (2022) Mechanisms of lncRNA Biogenesis as Revealed by Nascent Transcriptomics. Nature Reviews Molecular Cell Biology, 23, 389-406.
https://doi.org/10.1038/s41580-021-00447-6
[11]  St Laurent, G., Wahlestedt, C. and Kapranov, P. (2015) The Landscape of Long Noncoding RNA Classification. Trends in Genetics, 31, 239-251.
https://doi.org/10.1016/j.tig.2015.03.007
[12]  Goff, L.A. and Rinn, J.L. (2015) Linking RNA Biology to lncRNAs. Genome Research, 25, 1456-1465.
https://doi.org/10.1101/gr.191122.115
[13]  Wang, H., Meng, Q., Qian, J., et al. (2022) Review: RNA-Based Diagnostic Markers Discovery and Therapeutic Targets Development in Cancer. Pharmacology & Therapeutics, 234, Article ID: 108123.
https://doi.org/10.1016/j.pharmthera.2022.108123
[14]  Wang, C., Liu, W.-R., Tan, S., et al. (2022) Characterization of Distinct Circular RNA Signatures in Solid Tumors. Molecular Cancer, 21, Article No. 63.
https://doi.org/10.1186/s12943-022-01546-4
[15]  Herman, A.B., Tsitsipatis, D. and Gorospe, M. (2022) Integrated lncRNA Function upon Genomic and Epigenomic Regulation. Molecular Cell, 82, 2252-2266.
https://doi.org/10.1016/j.molcel.2022.05.027
[16]  Heydarnezhad Asl, M., Pasban Khelejani, F., Bahojb Mahdavi, S.Z., et al. (2022) The Various Regulatory Functions of Long Noncoding RNAs in Apoptosis, Cell Cycle, and Cellular Senescence. Journal of Cellular Biochemistry, 123, 995-1024.
https://doi.org/10.1002/jcb.30221
[17]  Zhang, X., Wang, W., Zhu, W., et al. (2019) Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. International Journal of Molecular Sciences, 20, Article No. 5573.
https://doi.org/10.3390/ijms20225573
[18]  Yang, M., Lu, H., Liu, J., et al. (2022) LncRNAfunc: A Knowledgebase of lncRNA Function in Human Cancer. Nucleic Acids Research, 50, D1295-D1306.
https://doi.org/10.1093/nar/gkab1035
[19]  Li, Y., Wei, C., Huang, C., et al. (2023) Long Noncoding RNA as a Potential Diagnostic Tool for Prostate Cancer: A Systematic Review and Meta-Analysis. Biomarkers, 28, 1-10.
https://doi.org/10.1080/1354750X.2022.2142293
[20]  Tong, G., Tong, W., He, R., et al. (2022) MALAT1 Polymorphisms and Lung Cancer Susceptibility in a Chinese Northeast Han Population. International Journal of Medical Sciences, 19, 1300-1306.
https://doi.org/10.7150/ijms.73026
[21]  Jin, L., Pan, Y.-L., Zhang, J. and Cao, P.-G. (2021) LncRNA HOTAIR Recruits SNAIL to Inhibit the Transcription of HNF4α and Promote the Viability, Migration, Invasion and EMT of Colorectal Cancer. Translational Oncology, 14, Article ID: 101036.
https://doi.org/10.1016/j.tranon.2021.101036
[22]  Jin, H., Lu, X., Ni, J., et al. (2017) HOTAIR rs7958904 Polymorphism Is Associated with Increased Cervical Cancer Risk in a Chinese Population. Scientific Reports, 7, Article No. 3144.
https://doi.org/10.1038/s41598-017-03174-1
[23]  Yang, T., Zeng, H., Chen, W., et al. (2016) Helicobacter pylori Infection, H19 and LINC00152 Expression in Serum and Risk of Gastric Cancer in a Chinese Population. Cancer Epidemiology, 44, 147-153.
https://doi.org/10.1016/j.canep.2016.08.015
[24]  Tong, Y.-S., Wang, X.-W., Zhou, X.-L., et al. (2015) Identification of the Long Non-Coding RNA POU3F3 in Plasma as a Novel Biomarker for Diagnosis of Esophageal Squamous Cell Carcinoma. Molecular Cancer, 14, Article No. 3.
https://doi.org/10.1186/1476-4598-14-3
[25]  Crulhas, B.P., Basso, C.R., Castro, G.R. and Pedrosa, V.A. (2022) Detection of Prostate Cancer Biomarker PCA3 by Using Aptasensors. Current Medicinal Chemistry, 29, 5895-5902.
https://doi.org/10.2174/0929867329666220607162250
[26]  Fonseca Coelho, F., Loli Guimar?es, F., Ribeiro Cabral, W.L., et al. (2015) Expression of PCA3 and PSA Genes as a Biomarker for Differential Diagnosis of Nodular Hyperplasia and Prostate Cancer. Genetics and Molecular Research, 14, 13519-13531.
https://doi.org/10.4238/2015.October.28.13
[27]  Chandra Gupta, S. and Nandan Tripathi, Y. (2017) Potential of Long Non-Coding RNAs in Cancer Patients: From Biomarkers to Therapeutic Targets. International Journal of Cancer, 140, 1955-1967.
https://doi.org/10.1002/ijc.30546
[28]  Wang, L.-X., Wan, C., Dong, Z.-B., et al. (2019) Integrative Analysis of Long Noncoding RNA (lncRNA), microRNA (miRNA) and mRNA Expression and Construction of a Competing Endogenous RNA (ceRNA) Network in Metastatic Melanoma. Medical Science Monitor, 25, 2896-2907.
https://doi.org/10.12659/MSM.913881
[29]  Deichmann, M., Benner, A., Bock, M., et al. (1999) S100-Beta, Melanoma-Inhibiting Activity, and Lactate Dehydrogenase Discriminate Progressive from Nonprogressive American Joint Committee on Cancer Stage IV Melanoma. Journal of Clinical Oncology, 17, 1891-1896.
https://doi.org/10.1200/JCO.1999.17.6.1891
[30]  Balch, C.M., Gershenwald, J.E., Soong, S.J., et al. (2009) Final Version of 2009 AJCC Melanoma Staging and Classification. Journal of Clinical Oncology, 27, 6199-6206.
https://doi.org/10.1200/JCO.2009.23.4799
[31]  Ene, C.-D., Anghel, A.-E., Neagu, M. and Nicolae, I. (2015) 25-OH Vitamin D and Interleukin-8: Emerging Biomarkers in Cutaneous Melanoma Development and Progression. Mediators of Inflammation, 2015, Article ID: 904876.
https://doi.org/10.1155/2015/904876
[32]  Durante, G., Broseghini, E., Comito, F., et al. (2022) Circulating microRNA Biomarkers in Melanoma and Non-Melanoma Skin Cancer. Expert Review of Molecular Diagnostics, 22, 305-318.
https://doi.org/10.1080/14737159.2022.2049243
[33]  Guo, M., Xiao, Z.-D., Dai, Z., et al. (2020) The Landscape of Long Noncoding RNA-Involved and Tumor-Specific Fusions across Various Cancers. Nucleic Acids Research, 48, 12618-12631.
https://doi.org/10.1093/nar/gkaa1119
[34]  Ding, Y., Li, M., Tayier, T., et al. (2021) Bioinformatics Analysis of lncRNA-Associated ceRNA Network in Melanoma. Journal of Cancer, 12, 2921-2932.
https://doi.org/10.7150/jca.51851
[35]  Liu, F. and Li, S. (2022) Non-Coding RNAs in Skin Cancers: Biological Roles and Molecular Mechanisms. Frontiers in Pharmacology, 13, Article 934396.
https://doi.org/10.3389/fphar.2022.934396
[36]  Winkle, M., El-Daly, S.M., Fabbri, M. and Calin, G.A. (2021) Noncoding RNA Therapeutics—Challenges and Potential Solutions. Nature Reviews Drug Discovery, 20, 629-651.
https://doi.org/10.1038/s41573-021-00219-z
[37]  Li, R., Zhang, L., Jia, L., et al. (2014) Long Non-Coding RNA BANCR Promotes Proliferation in Malignant Melanoma by Regulating MAPK Pathway Activation. PLOS ONE, 9, e100893.
https://doi.org/10.1371/journal.pone.0100893
[38]  Flockhart, R.J., Webster, D.E., Qu, K., et al. (2012) BRAFV600E Remodels the Melanocyte Transcriptome and Induces BANCR to Regulate Melanoma Cell Migration. Genome Research, 22, 1006-1014.
https://doi.org/10.1101/gr.140061.112
[39]  Hussen, B.M., Azimi, T., Abak, A., et al. (2021) Role of lncRNA BANCR in Human Cancers: An Updated Review. Frontiers in Cell and Developmental Biology, 9, Article 689992.
https://doi.org/10.3389/fcell.2021.689992
[40]  Liu, X.-F., Hao, J.-L., Xie, T., et al. (2018) The BRAF Activated Non-Coding RNA: A Pivotal Long Non-Coding RNA in Human Malignancies. Cell Proliferation, 51, e12449.
https://doi.org/10.1111/cpr.12449
[41]  Sarkar, D., Oghabian, A., Bodiyabadu, P.K., et al. (2017) Multiple Isoforms of ANRIL in Melanoma Cells: Structural Complexity Suggests Variations in Processing. International Journal of Molecular Sciences, 18, Article No. 1378.
https://doi.org/10.3390/ijms18071378
[42]  Maccioni, L., Rachakonda, P.S., Bermejo, J.L., et al. (2013) Variants at the 9p21 Locus and Melanoma Risk. BMC Cancer, 13, Article No. 325.
https://doi.org/10.1186/1471-2407-13-325
[43]  Lessard, L., Liu, M., Marzese, D.M., et al. (2015) The CASC15 Long Intergenic Noncoding RNA Locus Is Involved in Melanoma Progression and Phenotype Switching. Journal of Investigative Dermatology, 135, 2464-2474.
https://doi.org/10.1038/jid.2015.200
[44]  Yin, Y., Zhao, B., Li, D. and Yin, G. (2018) Long Non-Coding RNA CASC15 Promotes Melanoma Progression by Epigenetically Regulating PDCD4. Cell & Bioscience, 8, Article No. 42.
https://doi.org/10.1186/s13578-018-0240-4
[45]  Yang, X., Xie, Z., Lei, X. and Gan, R. (2020) Long Non-Coding RNA GAS5 in Human Cancer (Review). Oncology Letters, 20, 2587-2594.
https://doi.org/10.3892/ol.2020.11809
[46]  Chen, L., Yang, H., Xiao, Y., et al. (2016) Lentiviral-Mediated Overexpression of Long Non-Coding RNA GAS5 Reduces Invasion by Mediating MMP2 Expression and Activity in Human Melanoma Cells. International Journal of Oncology, 48, 1509-1518.
https://doi.org/10.3892/ijo.2016.3377
[47]  Tang, L., Zhang, W., Su, B. and Yu, B. (2013) Long Noncoding RNA HOTAIR Is Associated with Motility, Invasion, and Metastatic Potential of Metastatic Melanoma. BioMed Research International, 2013, Article ID: 251098.
https://doi.org/10.1155/2013/251098
[48]  Wang, J., Chen, J., Jing, G. and Dong, D. (2020) LncRNA HOTAIR Promotes Proliferation of Malignant Melanoma Cells through NF-κB Pathway. Iranian Journal of Public Health, 49, 1931-1939.
https://doi.org/10.18502/ijph.v49i10.4696
[49]  Cantile, M., Scognamiglio, G., Marra, L., et al. (2017) HOTAIR Role in Melanoma Progression and Its Identification in the Blood of Patients with Advanced Disease. Journal of Cellular Physiology, 232, 3422-3432.
https://doi.org/10.1002/jcp.25789
[50]  Wu, C.-F., Tan, G.-H., Ma, C.-C. and Li, L. (2013) The Non-Coding RNA Llme23 Drives the Malignant Property of Human Melanoma Cells. Journal of Genetics and Genomics, 40, 179-188.
https://doi.org/10.1016/j.jgg.2013.03.001
[51]  Ran, R., Jin, J.-W. and Zhang, W.-P. (2021) MALAT-1 Expression Correlates with Prognosis in Non-Small-Cell Lung Carcinoma: A Systematic Review and Meta-Analysis. Disease Markers, 2021, Article ID: 5424623.
https://doi.org/10.1155/2021/5424623
[52]  Wang, F., Ren, S., Chen, R., et al. (2014) Development and Prospective Multicenter Evaluation of the Long Noncoding RNA MALAT-1 as a Diagnostic Urinary Biomarker for Prostate Cancer. Oncotarget, 5, 11091-11102.
https://doi.org/10.18632/oncotarget.2691
[53]  Ren, S., Wang, F., Shen, J., et al. (2013) Long Non-Coding RNA Metastasis Associated in Lung Adenocarcinoma Transcript 1 Derived miniRNA as a Novel Plasma-Based Biomarker for Diagnosing Prostate Cancer. European Journal of Cancer, 49, 2949-2959.
https://doi.org/10.1016/j.ejca.2013.04.026
[54]  Tian, Y., Zhang, X., Hao, Y., Fang, Z. and He, Y. (2014) Potential Roles of Abnormally Expressed Long Noncoding RNA UCA1 and Malat-1 in Metastasis of Melanoma. Melanoma Research, 24, 335-341.
https://doi.org/10.1097/CMR.0000000000000080
[55]  Leucci, E., Vendramin, R., Spinazzi, M., et al. (2016) Melanoma Addiction to the Long Non-Coding RNA SAMMSON. Nature, 531, 518-522.
https://doi.org/10.1038/nature17161
[56]  Goding, C.R. (2016) Targeting the lncRNA SAMMSON Reveals Metabolic Vulnerability in Melanoma. Cancer Cell, 29, 619-621.
https://doi.org/10.1016/j.ccell.2016.04.010
[57]  Han, S., Yan, Y., Ren, Y., et al. (2021) LncRNA SAMMSON Mediates Adaptive Resistance to RAF Inhibition in BRAF-Mutant Melanoma Cells. Cancer Research, 81, 2918-2929.
https://doi.org/10.1158/0008-5472.CAN-20-3145
[58]  Xing, X., Xu, T., Liu, B. and Guo, Q. (2022) LncRNA SNHG5 Can Regulate the Proliferation and Migration of Diffuse Large B Cell Lymphoma Progression via Targeting miR-181-5p/XIAP. Journal of Cancer, 13, 784-792.
https://doi.org/10.7150/jca.60521
[59]  Xiao, J., Zhu, C., Ni, P., et al. (2021) Correlations of SNHG5 Genetic Polymorphisms with Susceptibility and Prognosis to Gastric Cancer in a Chinese Population. Genomics, 113, 1754-1760.
https://doi.org/10.1016/j.ygeno.2021.04.025
[60]  Yan, L., Wang, S., Li, Y., et al. (2022) Retraction: SNHG5 Promotes Proliferation and Induces Apoptosis in Melanoma by Sponging miR-155. RSC Advances, 12, 25279.
https://doi.org/10.1039/D2RA90086F
[61]  Liu, T., Shen, S.-K., Xiong, J.-G., et al. (2016) Clinical Significance of Long Noncoding RNA SPRY4-IT1 in Melanoma Patients. FEBS Open Bio, 6, 147-154.
https://doi.org/10.1002/2211-5463.12030
[62]  Khaitan, D., Dinger, M.E., Mazar, J., et al. (2011) The Melanoma-Upregulated Long Noncoding RNA SPRY4-IT1 Modulates Apoptosis and Invasion. Cancer Research, 71, 3852-3862.
https://doi.org/10.1158/0008-5472.CAN-10-4460
[63]  Pei, S., Chen, J., Lu, J., et al. (2020) The Long Noncoding RNA UCA1 Negatively Regulates Melanogenesis in Melanocytes. Journal of Investigative Dermatology, 140, 152-163.
https://doi.org/10.1016/j.jid.2019.04.029
[64]  Wei, Y., Sun, Q., Zhao, L., et al. (2016) LncRNA UCA1-miR-507-FOXM1 Axis Is Involved in Cell Proliferation, Invasion and G0/G1 Cell Cycle Arrest in Melanoma. Medical Oncology, 33, Article No. 88.
https://doi.org/10.1007/s12032-016-0804-2
[65]  Munteanu, M.C., Sethuraman, S.N., Singh, M.P., et al. (2021) LncRNA FENDRR Expression Correlates with Tumor Immunogenicity. Genes, 12, 897.
https://doi.org/10.3390/genes12060897
[66]  Szafranski, P. and Stankiewicz, P. (2021) Long Non-Coding RNA FENDRR: Gene Structure, Expression, and Biological Relevance. Genes, 12, Article No. 177.
https://doi.org/10.3390/genes12020177
[67]  Chen, X.-E., Chen, P., Chen, S., et al. (2020) Long Non-Coding RNA FENDRR Inhibits Migration and Invasion of Cutaneous Malignant Melanoma Cells. Bioscience Reports, 40, Article ID: BSR20191194.
https://doi.org/10.1042/BSR20191194
[68]  Xu, W., Wang, B., Cai, Y., et al. (2021) The Therapeutic Value and Molecular Mechanisms of lncRNA FENDRR in Human Cancer. Current Pharmaceutical Design, 27, 4100-4106.
https://doi.org/10.2174/1381612827666210820094702
[69]  Guo, W., Xu, T., Lee, J.J., Murphy, G.F. and Lian, C.G. (2015) Epigenetic Markers in Melanoma. Melanoma Management, 2, 367-382.
https://doi.org/10.2217/mmt.15.30
[70]  Guo, J.-H., Yin, S.-S., Liu, H., Liu, F. and Gao, F.-H. (2021) Tumor Microenvironment Immune-Related lncRNA Signature for Patients with Melanoma. Annals of Translational Medicine, 9, Article No. 857.
https://doi.org/10.21037/atm-21-1794
[71]  Huang, J., Wang, J., He, H., et al. (2021) Close Interactions between lncRNAs, Lipid Metabolism and Ferroptosis in Cancer. International Journal of Biological Sciences, 17, 4493-4513.
https://doi.org/10.7150/ijbs.66181
[72]  Ji, K., Zhang, J., Fan, R., Yang, S. and Dong, C. (2018) Differential Expression of lncRNAs and Predicted Target Genes in Normal Mouse Melanocytes and B16 Cells. Experimental Dermatology, 27, 1230-1236.
https://doi.org/10.1111/exd.13768
[73]  Lobos-González, L., Silva, V., Araya, M., et al. (2016) Targeting Antisense Mitochondrial ncRNAs Inhibits Murine Melanoma Tumor Growth and Metastasis through Reduction in Survival and Invasion Factors. Oncotarget, 7, 58331-58350.
https://doi.org/10.18632/oncotarget.11110
[74]  Dashti, F., Mirazimi, S.M.A., Kazemioula, G., et al. (2023) Long Non-Coding RNAs and Melanoma: From Diagnosis to Therapy. Pathology-Research and Practice, 241, Article ID: 154232.
https://doi.org/10.1016/j.prp.2022.154232

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133