全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Evolving Absolute Magnitude of Type 1a Supernovae and Its Critical Impact on the Cosmological Parameters

DOI: 10.4236/ijaa.2023.132003, PP. 39-60

Keywords: Supernovae SNe1a, Cosmological Parameters, Cosmology, Acceleration

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, a computer optimization model has been developed that allows one to load the initial data of observations of supernovae 1a into a table and, in simple steps, by searching for the best fit between observations and theory, obtain the values of the parameters of cosmological models. The optimization is carried out assuming that the absolute magnitude of supernovae is not constant, but evolves with time. It is assumed that the dependence of the absolute magnitude on the redshift is linear: M = M( z = 0) + εc?z, where εcis the evolution coefficient of the absolute magnitude of type 1a supernovae. In the case of a flat universe ( ΩM + ΩΛ = 1 ), the best fit between theory and observation is εc?= 0.304. In this case, for the cosmological parameters we obtain ΩΛ = 0.000, ΩM =1.000. Naturally, this result exactly coincides with the simulation result for the model with zero cosmological constant ( εc = 0.304, q0 = 0.500 ). Within the framework of the ΛCDM model, without restriction on space curvature ( ΩM + ΩΛ+ ΩK = 1 ), we obtain the following values: εc = 0.304, ΩΛ = 0.000, ΩM?= 1

References

[1]  Hoyle, F. and Fowler, W.A. (1960) Nucleosynthesis in Supernovae. The Astrophysical Journal, 132, 565-590.
https://doi.org/10.1086/146963
[2]  Sandage, A. and Tammann, G. (1982) Steps toward the Hubble Constant. VIII— The Global Value. The Astrophysical Journal, 256, 339-345.
https://doi.org/10.1086/159911
[3]  Eddington, A.S. (1923) The Mathematical Theory of Relativity. 2nd Edition, Cambridge University Press, London, 288.
https://www.gutenberg.org/files/59248/59248-pdf.pdf
[4]  Hubble, E.P. (1929) A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences of the United States of America, 15, 168-173.
https://doi.org/10.1073/pnas.15.3.168
[5]  Riess, A., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038.
https://doi.org/10.1086/300499
[6]  Perlmutter, S., et al. (1999) Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
https://doi.org/10.1086/307221
[7]  Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford.
https://doi.org/10.1007/s10714-008-0728-z
[8]  Ashall, C., et al. (2016) Luminosity Distributions of Type Ia Supernovae. Monthly Notices of the Royal Astronomical Society, 460, 3529-3544.
https://doi.org/10.1093/mnras/stw1214
[9]  Mahtessian, A.P., et al. (2020) Absolute Magnitude Test: Testing Cosmological Models Based on Compilations of Supernovae SNe Ia “Union” and “Union2”. Advances in Astrophysics, 5, 18-36.
https://doi.org/10.22606/adap.2020.51003
http://www.isaacpub.org/images/PaperPDF/AdAp_100138_2019122514411303809.pdf
[10]  Kang, J., et al. (2020) Early-Type Host Galaxies of Type Ia Supernovae. II. Evidence for Luminosity Evolution in Supernova Cosmology. The Astrophysical Journal, 889, 8-23.
https://doi.org/10.3847/1538-4357/ab5afc
[11]  Hicken, M., et al. (2009) Improved Dark Energy Constraints from ~100 New CfA Supernova Type Ia Light Curves. The Astrophysical Journal, 700, 1097-1140.
https://doi.org/10.1088/0004-637X/700/2/1097
[12]  Sullivan, M., et al. (2010) The Dependence of Type Ia Supernovae luminosities on Their Host Galaxies. Monthly Notices of the Royal Astronomical Society, 406, 782-802.
https://doi.org/10.1111/j.1365-2966.2010.16731.x
[13]  Kelly, P.L., et al. (2010) Hubble Residuals of Nearby Type Ia Supernovae Are Correlated with Host Galaxy Masses. The Astrophysical Journal, 715, 743-756.
https://doi.org/10.1088/0004-637X/715/2/743
[14]  Rigault, M., et al. (2018) Strong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate.
https://doi.org/10.48550/arXiv.1806.03849
[15]  Carroll, S.M. et al. (1992) The Cosmological Constant. Annual Review of Astronomy and Astrophysics, 30, 499-542.
https://doi.org/10.1146/annurev.aa.30.090192.002435
[16]  Mattig, W. (1958) über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit. Astronomische Nachrichten, 284, 108-111.
https://doi.org/10.1002/asna.19572840303
[17]  Amanullah, R., et al. (2010) Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation. The Astrophysical Journal, 716, 712-738.
https://doi.org/10.1088/0004-637X/716/1/712
[18]  Hamuy, M., et al. (1996) The Hubble Diagram of the Calan/Tololo Type IA Supernovae and the Value of HO. The Astronomical Journal, 112, 2398-2407.
https://doi.org/10.1086/118191
[19]  Krisciunas, K., et al. (2005) Hubble Space Telescope Observations of Nine High-Redshift ESSENCE Supernovae. The Astronomical Journal, 130, 2453-2472.
https://doi.org/10.1086/497640
[20]  Riess, A., et al. (1999) BVRI Light Curves for 22 Type IA Supernovae. The Astronomical Journal, 117, 707-724.
https://doi.org/10.1086/300738
[21]  Jha, S., et al. (2006) UBVRI Light Curves of 44 Type Ia Supernovae. The Astronomical Journal, 131, 527-554.
https://doi.org/10.1086/497989
[22]  Kowalski, M., et al. (2008) Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets. The Astrophysical Journal, 686, 749-778.
https://doi.org/10.1086/589937
[23]  Schmidt, B.P., et al. (1998) The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae. The Astrophysical Journal, 507, 46-63.
https://doi.org/10.1086/306308
[24]  Holtzman, J.A., et al. (2008) The Sloan Digital Sky Survey-II: Photometry and Supernova IA Light Curves from the 2005 Data. The Astronomical Journal, 136, 2306-2320.
https://doi.org/10.1088/0004-6256/136/6/2306
[25]  Barris, B., et al. (2004) Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7. The Astrophysical Journal, 602, 571-594.
https://doi.org/10.1086/381122
[26]  Amanullah, R., et al. (2008) Light Curves of Five Type Ia Supernovae at Intermediate Redshift. Astronomy and Astrophysics, 486, 375-382.
https://doi.org/10.1051/0004-6361:20079070
[27]  Knop, R., et al. (2003) New Constraints on ΩM, ΩΛ and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope. The Astrophysical Journal, 598, 102-137.
https://doi.org/10.1086/378560
[28]  Astier, P., et al. (2006) The Supernova Legacy Survey: Measurement of ΩM, ΩΛ and w from the First Year Data Set. Astronomy and Astrophysics, 447, 31-48.
https://doi.org/10.1051/0004-6361:20054185
[29]  Miknaitis, G., et al. (2007) The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry. The Astrophysical Journal, 666, 674-693.
https://doi.org/10.1086/519986
[30]  Tonry, J., et al. (2003) Cosmological Results from High-z Supernovae. The Astrophysical Journal, 594, 1-24.
https://doi.org/10.1086/376865
[31]  Riess, A., et al. (2007) New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy. The Astrophysical Journal, 659, 98-121.
https://doi.org/10.1086/510378

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413