全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phytotoxicity Assessment of Biofertilizer Produced from Bioreactor Composting Technology Using Lettuce (Lactuca sativa L.) Seeds

DOI: 10.4236/oje.2023.135017, PP. 257-270

Keywords: Biofertilizer, Bioreactor, Germination, Lettuce, And Phytotoxicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Establishing reliable technological information on the safety of biofertilizers produced from a bioreactor composting technique is a must prior to its commercialization. A phytotoxicity study of biofertilizer made from the bioreactor composting technology at Aklan State University, Banga, Aklan, Philippines was conducted for fourteen (14) days using commercially available lettuce seeds (Lactuca sativa L.). Standard phytotoxicity attributes such as hypocotyl length, radicle length, relative germination percentage, and relative radicle growth observed during the germination stage were evaluated. Results revealed no significant difference in the radicle lengths of the germinated lettuce seeds as affected by the varying levels of biofertilizer dilution at H(3) = 10.567, p = 0.061 > 0.05. On the other hand, the hypocotyl length of the lettuce showed significant differences in response to varying levels of biofertilizer dilution with Welch’s F(5, 5.163) = 8.175, p = 0.017 < 0.05. Also, the different levels of biofertilizer affected significantly the germination percentage of lettuce seeds F(5, 12) = 5.822, p = 0.006 < 0.05. All levels of biofertilizer treatments indicated a decrease in relative germination percentage. However, those seeds applied with 10% biofertilizer have the highest reduction of germination percentage, equivalent to 86.9% (RGP = 13.10%). All levels of biofertilizer showed an increase in radicle growth in contrast to the negative control plant except for the one given a 10% level of biofertilizer. Seeds that received 10% biofertilizer showed an extremely high reduction in radicle growth, equivalent to 72.22% (RRG = 27.78%). The study shows that applying low levels of the bioreactor-produced biofertilizer will observably reduce the measure of the germination characteristics of lettuce seeds, but not necessarily low enough to be considered phytotoxic. However, the application of at least 10% bioreactor-produced biofertilizer can presumptively lead to phytotoxicity.

References

[1]  Kannaiyan, S. (2002) Biotechnology of Biofertilizers. Springer, Dordrecht.
[2]  Pandey, V.C. and Singh, V. (2019) Exploring the Potential and Opportunities of Current Tools for Removal of Hazardous Materials from Environments. In: Pandey, V.C. and Bauddh, K., Eds., Phytomanagement of Polluted Sites, Elsevier, Amsterdam, 501-516.
https://doi.org/10.1016/B978-0-12-813912-7.00020-X
[3]  Jain, G. (2019) Biofertilizers—A Way to Organic Agriculture. Journal of Pharmacognosy and Phytochemistry, 8, 49-52.
[4]  Thomas, J., Ajeshkumar, N.K., Mathew, J.J. and Vazhacharickal, P.J. (2021) Isolation of Nitrogen Fixing, Phosphate Solubilizing Bacteria and Development of Biofertilizer for Crop Improvement.
https://www.amazon.sg/Isolation-solubilizing-development-biofertilizer-improvement/dp/B08TCPZ7CD/ref=monarch_sidesheet#detailBullets_feature_div
[5]  Kantha, T., Kantachote, D. and Klongdee, N. (2015) Potential of Biofertilizers from Selected Rhodopseudomonas palustris Strains to Assist Rice (Oryza sativa L. subsp. indica) Growth under Salt Stress and to Reduce Greenhouse Gas Emissions. Annals of Microbiology, 65, 2109-2118.
https://doi.org/10.1007/s13213-015-1049-6
[6]  Blok, C., Kreij, C.D., Baas, R.O.B. and Wever, G. (2008) Analytical Methods Used in Soilless Cultivation. In: Raviv, M. and Lieth, J.H., Eds., Soilless Culture, Elsevier, Amsterdam, 245-289.
https://doi.org/10.1016/B978-044452975-6.50009-5
[7]  Blok, C., Baumgarten, A., Baas, R., Wever, G. and Lohr, D. (2019) Analytical Methods Used with Soilless Substrates. In: Raviv, M., Lieth, J.H. and Bar-Tal, A., Eds., Soilless Culture (Second Edition), Elsevier, Amsterdam, 509-564.
https://doi.org/10.1016/B978-0-444-63696-6.00011-6
[8]  Adetunji, D.A., Obideyi, O.A., Evinemi, O.T. and Adetunji, O.A. (2020) Phytotoxicity Assessment of Compost-Type Biofertilizer Using Co-Composting and Post Composting Fortification Methods. Asian Journal of Agriculture and Food Sciences, 8, 44-48.
https://doi.org/10.24203/ajafs.v8i3.6240
[9]  (2012) Michelle le strange, Recognizing Herbicide Phytotoxicity: From Master Gardener Newspaper Articles.
https://ucanr.edu/datastoreFiles/268-543.pdf
[10]  Gariglio, N.F., Buyatti, M.A., Pilatti, R.A., Russia, D.G. and Acosta, M.R. (2002) Use of a Germination Bioassay to Test Compost Maturity of Willow (Salix sp.) Sawdust. New Zealand Journal of Crop and Horticultural Science, 30, 135-139.
https://doi.org/10.1080/01140671.2002.9514208
[11]  Brewer, L.J. and Sullivan, D.M. (2003) Maturity and Stability Evaluation of Composted Yard Trimmings. Compost Science & Utilization, 11, 96-112.
https://doi.org/10.1080/1065657X.2003.10702117
[12]  Yang, Y., Wang, G., Li, G., Ma, R., Kong, Y. and Yuan, J. (2021) Selection of Sensitive Seeds for Evaluation of Compost Maturity with the Seed Germination Index. Waste Management, 136, 238-243.
https://doi.org/10.1016/j.wasman.2021.09.037
[13]  Tansengco, M.L., Herrera, D.L., Tejano, J.C. and Esguerra, R.L. (2016) Development of a Small-Scale Composter and Its Application in Composting of Biodegradable Waste Generated from a Government Institution. Asian Journal of Biological and Life Science, 5, 21-27.
[14]  Mañas, P. and De las Heras, J. (2018) Phytotoxicity Test Applied to Sewage Sludge Using Lactuca sativa L. and Lepidium sativum L. Seeds. International Journal of Environmental Science and Technology, 15, 273-280.
https://doi.org/10.1007/s13762-017-1386-z
[15]  Sobrero, M.C. and Ronco, A. (2004) Ensayo de toxicidad aguda con semillas de lechuga Lactuca sativa L. In: Castillo, G., Ed., Ensayos toxicológicos y métodos de evaluación de calidad de aguas: Estandarización, intercalibración, resultados y aplicaciones. Instituto Mexicano de Tecnología del Agua, México, 63-70.
[16]  Hanapi, S.Z., Awad, H.M., Ali, S.I.S., Sarip, S.H.M., Sarmidi, M.R. and Aziz, R. (2013) Agriculture Wastes Conversion by Beneficial Microorganisms into Multi functional Biofertilizer for Sustainable Agriculture Applications. Malaysian Journal of Microbiology, 9, 60-67.
https://doi.org/10.21161/mjm.43812
[17]  Fageria, N.K. and Baligar, V.C. (2001) Improving Nutrient Use Efficiency of Annual Crops in Brazilian Acid Soils for Sustainable Crop Production. Communications in Soil Science and Plant Analysis, 32, 1303-1319.
https://doi.org/10.1081/CSS-100104114
[18]  Chang, C.H. and Yang, S.S. (2009) Thermo-Tolerant Phosphate-Solubilizing Microbes for Multi-Functional Biofertilizer Preparation. Bioresource Technology, 100, 1648-1658.
https://doi.org/10.1016/j.biortech.2008.09.009
[19]  Henry, J., Whipker, B.E., Owen, W.G. and Currey, C. (2018) Lettuce (Lactuca sativa). Nutritional Monitoring Series.
https://hortamericas.com/wp-content/uploads/2018/04/e-gro-Nutritional-Factsheet-Lettuce.pdf
[20]  Farag, A.A.A., Abdrabbo, M.A.A. and Abd-Elmoniem, E.M. (2013) Using Different Nitrogen and Compost Levels on Lettuce Grown in Coconut Fiber. Journal of Horticulture and Forestry, 5, 21-28.
[21]  Know More Grow More (2018) Interpreting Phosphorus and Potassium Levels.
https://knowmoregrowmore.com/interpreting-phosphorus-and-potassium-levels/
[22]  CDFA, California Crop Fertilization Guidelines.
https://www.cdfa.ca.gov/is/ffldrs/frep/FertilizationGuidelines/Lettuce.html
[23]  Zhou, M.L., Wieslander, G., Tang, Y., Tang, Y.X., Shao, J.R. and Wu, Y.M. (2016) Bioactive Compounds in Buckwheat Sprouts. In: Zhou, M.L., Kreft, I., Woo, S.H., Chrungoo, N. and Wieslander, G., Eds., Molecular Breeding and Nutritional Aspects of Buckwheat, Academic Press, Cambridge, 151-159.
https://doi.org/10.1016/B978-0-12-803692-1.00011-0
[24]  Zhou, H., Yang, W.T., Zhou, X., Liu, L., Gu, J.F., Wang, W.L., Liao, B.H., et al. (2016) Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. International Journal of Environmental Research and Public Health, 13, Article 289.
https://doi.org/10.3390/ijerph13030289
[25]  Yang, Y., Zhang, F.S., Li, H.F. and Jiang, R.F. (2009) Accumulation of Cadmium in the Edible Parts of Six Vegetable Species Grown in Cd-Contaminated Soils. Journal of Environmental Management, 90, 1117-1122.
https://doi.org/10.1016/j.jenvman.2008.05.004
[26]  Jolly, Y.N., Islam, A. and Akbar, S. (2013) Transfer of Metals from Soil to Vegetables and Possible Health Risk Assessment. SpringerPlus, 2, 385-391.
https://doi.org/10.1186/2193-1801-2-385
[27]  Roosta, H.R. (2011) Interaction between Water Alkalinity and Nutrient Solution pH on the Vegetative Growth, Chlorophyll Fluorescence and Leaf Magnesium, Iron, Manganese, and Zinc Concentrations in Lettuce. Journal of Plant Nutrition, 34, 717-731.
https://doi.org/10.1080/01904167.2011.540687
[28]  Singh, S., Parihar, P., Singh, R., Singh, V.P. and Prasad, S.M. (2016) Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Frontiers in Plant Science, 6, Article 1143.
https://doi.org/10.3389/fpls.2015.01143
[29]  Spiassi, A., dos Santos, F.T., Nóbrega, L.H.P., Cestonaro, T. and de Mendonça Costa, M.S.S. (2015) Toxicity of Biofertilizers on Seeds of Lettuce and Maize. Científica, 43, 156-164.
https://doi.org/10.15361/1984-5529.2015v43n2p156-164
[30]  Bakonyi, N., Bott, S., Gajdos, E., Szabó, A., Jakab, A., Tóth, B., Veres, S., et al. (2013) Using Biofertilizer to Improve Seed Germination and Early Development of Maize. Polish Journal of Environmental Studies, 22, 1595-1599.
[31]  Kristó, I., Vályi-Nagy, M., Rácz, A., Irmes, K., Szentpéteri, L., Jolánkai, M., Tar, M., et al. (2023) Effects of Nutrient Supply and Seed Size on Germination Parameters and Yield in the Next Crop Year of Winter Wheat (Triticum aestivum L.). Agriculture, 13, Article 419.
https://doi.org/10.3390/agriculture13020419
[32]  Szanyi, M. and Göncz, A. (1991) A vetésidő és a N műtrágyázás hatása az őszi búza vetőmag biológiai értékére (vigorára). Növénytermelés, 40, 333-338.
[33]  Aydinalp, C. and Marinova, S. (2009) The Effects of Heavy Metals on Seed Germination and Plant Growth on Alfalfa Plant (Medicago sativa). Bulgarian Journal of Agricultural Science, 15, 347-350.
[34]  Sethy, S.K. and Ghosh, S. (2013) Effect of Heavy Metals on Germination of Seeds. Journal of Natural Science, Biology, and Medicine, 4, 272-275.
https://doi.org/10.4103/0976-9668.116964
[35]  Wang, W., Vinocur, B. and Altman, A. (2003) Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance. Planta, 218, 1-14.
https://doi.org/10.1007/s00425-003-1105-5
[36]  Pourrut, B., Shahid, M., Dumat, C., Winterton, P. and Pinelli, E. (2011) Lead Uptake, Toxicity, and Detoxification in Plants. Reviews of Environmental Contamination and Toxicology, 213, 113-136.
https://doi.org/10.1007/978-1-4419-9860-6_4
[37]  Shereen, A., Ansari, R., Raza, S., Mumtaz, S., Khan, M.A. and Khan, M.A. (2011) Salinity Induced Metabolic Changes in Rice (Oryza sativa L.) Seeds during Germination. Pakistan Journal of Botany, 43, 1659-1661.
[38]  Rajendran, K., Tester, M. and Roy, S.J. (2009) Quantifying the Three Main Components of Salinity Tolerance in Cereals. Plant, Cell & Environment, 32, 237-249.
https://doi.org/10.1111/j.1365-3040.2008.01916.x
[39]  Munns, R. and Tester, M. (2008) Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59, 651-681.
https://doi.org/10.1146/annurev.arplant.59.032607.092911
[40]  Guo, R., Yang, Z.Z., Li, F., Yan, C.R., Zhong, X.L., Liu, Q., et al. (2015) Comparative Metabolic Responses and Adaptive Strategies of Wheat (Triticum aestivum) to Salt and Alkali Stress. BMC Plant Biology, 15, Article No. 170.
https://doi.org/10.1186/s12870-015-0546-x
[41]  Wang, X.S., Ren, H.L., Wei, Z.W., Wang, Y.W. and Ren, W.B. (2017) Effects of Neutral Salt and Alkali on Ion Distributions in the Roots, Shoots, and Leaves of Two Alfalfa Cultivars with Differing Degrees of Salt Tolerance. Journal of Integrative Agriculture, 16, 1800-1807.
https://doi.org/10.1016/S2095-3119(16)61522-8
[42]  Zhang, H.H., Li, X., Che, Y.H., Wang, Y., Li, M.B., Yang, R.Y., et al. (2020) A Study on the Effects of Salinity and pH on PSII Function in Mulberry Seedling Leaves under Saline—Alkali Mixed Stress. Trees, 34, 693-706.
https://doi.org/10.1007/s00468-019-01949-9
[43]  Lu, H.Y., Wang, Z.Q., Xu, C.Y., Li, L.H. and Yang, C.W. (2021) Multiomics Analysis Provides Insights into Alkali Stress Tolerance of Sunflower (Helianthus annuus L.). Plant Physiology and Biochemistry, 166, 66-77.
https://doi.org/10.1016/j.plaphy.2021.05.032

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133