全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Solar-Driven Water Treatment: New Technologies, Challenges, and Futures

DOI: 10.4236/gsc.2023.132007, PP. 110-152

Keywords: Renewable Energy (RE), Solar-Driven Desalination, Solar Water Disinfection (SODIS), Brine, Greenhouse Gases (GHGs), Reverse Osmosis (RO)

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this review, the new solar water treatment technologies, including solar water desalination in two direct and indirect methods, are comprehensively presented. Recent advances and applications of five major solar desalination technologies include solar-powered humidification–dehumidification, multi-stage flash desalination, multi-effect desalination, RO, and solar stills. Each technology’s productivity, energy consumption, and water production costs are presented. Also, common methods of solar water disinfection have been reviewed as one of the common and low-cost methods of water treatment, especially in areas with no access to drinking water. However, although desalination technologies have many social, economic, and public health benefits, they are energy-intensive and negatively affect the environment. In addition, the disposal of brine from the desalination processes is one of the most challenging and costly issues. In this regard, the environmental effects of desalination technologies are presented and discussed. Among direct solar water desalination technologies, solar still technology is a low-cost, low-tech, and low-investment method suitable for remote areas, especially in developing countries with low financial support and access to skilled workers. Indirect solar-driven water desalination technologies, including thermal and membrane technologies, are more reliable and technically more mature. Recently, RO technology has received particular attention thanks to its lower energy demand, lower cost, and available solutions to increase membrane durability. Disposal of brines can account for much of the water cost and potentially negatively affect the environment. Therefore, in addition to efforts to improve the efficiency and reduce the cost of solar technologies and water treatment processes, future research studies should consider developing new solutions to this issue.

References

[1]  Dehghan, M., Ghasemizadeh, M. and Rashidi, S. (2022) Solar-Driven Water Treatment: Generation II Technologies (Ch. 4). In: Mahian, O., Wei, J., Taylor, R.A. and Wongwises, S., Eds., Solar-Driven Water Treatment, Academic Press, Cambridge, 119-200.
https://doi.org/10.1016/B978-0-323-90991-4.00006-2
[2]  Jones, E., Qadir, M., van Vliet, M.T.H., Smakhtin, V. and Kang, S.-M. (2019) The State of Desalination and Brine Production: A Global Outlook. Science of the Total Environment, 657, 1343-1356.
https://doi.org/10.1016/j.scitotenv.2018.12.076
[3]  Darre, N.C. and Toor, G.S. (2018) Desalination of Water: A Review. Current Pollution Reports, 4, 104-111.
https://doi.org/10.1007/s40726-018-0085-9
[4]  Alhaj, M., Tahir, F. and Al-Ghamdi, S.G. (2022) Life-Cycle Environmental Assessment of Solar-Driven Multi-Effect Desalination (MED) Plant. Desalination, 524, Article ID: 115451.
https://doi.org/10.1016/j.desal.2021.115451
[5]  Loutatidou, S., Mavukkandy, M.O., Chakraborty, S. and Arafat, H.A. (2017) Introduction: What Is Sustainable Desalination? (Ch. 1). In: Arafat, H.A., Ed., Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach, Elsevier, Amsterdam, 1-29.
https://doi.org/10.1016/B978-0-12-809791-5.00001-8
[6]  Rabiee, H., Khalilpour, K.R., Betts, J.M. and Tapper, N. (2019) Energy-Water Nexus: Renewable-Integrated Hybridized Desalination Systems (Ch. 13). In: Khalilpour, K.R., Ed., Polygeneration with Polystorage: For Chemical and Energy Hubs, Academic Press, Cambridge, 409-450.
https://doi.org/10.1016/B978-0-12-813306-4.00013-6
[7]  Harper, D. (2022) Online Etymology Dictionary.
https://etymonline.com
[8]  Song, Z., Tiraferri, A., Yuan, R., Cao, J., Tang, P., Xie, W., Crittenden, J.C. and Liu, B. (2022) Theoretical Evaluation of the Evaporation Rate of 2D Solar-Driven Interfacial Evaporation and of Its Large-Scale Application Potential. Desalination, 537, Article ID: 115891.
https://doi.org/10.1016/j.desal.2022.115891
[9]  Rahimi, B. and Chua, H.T. (2017) Low Grade Heat Driven Multi-Effect Distillation and Desalination. Elsevier, Amsterdam.
[10]  Prakash, P. and Velmurugan, V. (2015) Parameters Influencing the Productivity of Solar Stills—A Review. Renewable & Sustainable Energy Reviews, 49, 585-609.
https://doi.org/10.1016/j.rser.2015.04.136
[11]  El-Dessouky, H.T. and Ettouney, H.M. (2002) Fundamentals of Salt Water Desalination. Elsevier, Amsterdam.
[12]  Buros, O. (2000) The ABCs of Desalting. International Desalination Association, Topsfield.
[13]  Kabeel, A.E., Arunkumar, T., Denkenberger, D.C. and Sathyamurthy, R. (2017) Performance Enhancement of Solar Still through Efficient Heat Exchange Mechanism—A Review. Applied Thermal Engineering, 114, 815-836.
https://doi.org/10.1016/j.applthermaleng.2016.12.044
[14]  Narayan, G.P., St. John, M.G., Zubair, S.M. and Lienhard, J.H. (2013) Thermal Design of the Humidification Dehumidification Desalination System: An Experimental Investigation. International Journal of Heat and Mass Transfer, 58, 740-748.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.035
[15]  Park, I.S., Park, S.M. and Ha, J.S. (2005) Design and Application of Thermal Vapor Compressor for Multi-Effect Desalination Plant. Desalination, 182, 199-208.
https://doi.org/10.1016/j.desal.2005.02.027
[16]  Hanshik, C., Jeong, H., Jeong, K.-W. and Choi, S.-H. (2016) Improved Productivity of the MSF (Multi-Stage Flashing) Desalination Plant by Increasing the TBT (Top Brine Temperature). Energy, 107, 683-692.
https://doi.org/10.1016/j.energy.2016.04.028
[17]  Jamil, M.A. and Zubair, S.M. (2017) Design and Analysis of a Forward Feed Multi-Effect Mechanical Vapor Compression Desalination System: An Exergo-Economic Approach. Energy, 140, 1107-1120.
https://doi.org/10.1016/j.energy.2017.08.053
[18]  Zhou, S., Gong, L., Liu, X. and Shen, S. (2019) Mathematical Modeling and Performance Analysis for Multi-Effect Evaporation/Multi-Effect Evaporation with Thermal Vapor Compression Desalination System. Applied Thermal Engineering, 159, Article ID: 113759.
https://doi.org/10.1016/j.applthermaleng.2019.113759
[19]  Jayakody, H., Al-Dadah, R. and Mahmoud, S. (2018) Numerical Investigation of Indirect Freeze Desalination Using an Ice Maker Machine. Energy Conversion and Management, 168, 407-420.
https://doi.org/10.1016/j.enconman.2018.05.010
[20]  Khan, M.N., Peters, C.J. and Koh, C.A. (2019) Desalination Using Gas Hydrates: The Role of Crystal Nucleation, Growth and Separation. Desalination, 468, Article ID: 114049.
https://doi.org/10.1016/j.desal.2019.06.015
[21]  Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A. and Hilal, N. (2019) Reverse Osmosis Desalination: A State-of-the-Art Review. Desalination, 459, 59-104.
https://doi.org/10.1016/j.desal.2019.02.008
[22]  Qasem, N.A.A., Qureshi, B.A. and Zubair, S.M. (2018) Improvement in Design of Electrodialysis Desalination Plants by Considering the Donnan Potential. Desalination, 441, 62-76.
https://doi.org/10.1016/j.desal.2018.04.023
[23]  Alsaman, A.S., Askalany, A.A., Harby, K. and Ahmed, M.S. (2016) A State of the Art Hybrid Adsorption Desalination-Cooling Systems. Renewable & Sustainable Energy Reviews, 58, 692-703.
https://doi.org/10.1016/j.rser.2015.12.266
[24]  Richter, T., Landsgesell, J., Kosovan, P. and Holm, C. (2017) On the Efficiency of a Hydrogel-Based Desalination Cycle. Desalination, 414, 28-34.
https://doi.org/10.1016/j.desal.2017.03.027
[25]  Subban, C.V. and Gadgil, A.J. (2019) Electrically Regenerated Ion-Exchange Technology for Desalination of Low-Salinity Water Sources. Desalination, 465, 38-43.
https://doi.org/10.1016/j.desal.2019.04.019
[26]  Lopez, A.M., Williams, M., Paiva, M., Demydov, D., Do, T.D., Fairey, J.L., Lin, Y.P.J. and Hestekin, J.A. (2017) Potential of Electrodialytic Techniques in Brackish Desalination and Recovery of Industrial Process Water for Reuse. Desalination, 409, 108-114.
https://doi.org/10.1016/j.desal.2017.01.010
[27]  Irki, S., Kasbadji-Merzouk, N., Hanini, S. and Ghernaout, D. (2020) Modelling of the Coupling of Desalination Plants with the Thermal Solar Energy System. Water Supply, 20, 1807-1822.
https://doi.org/10.2166/ws.2020.092
[28]  Giwa, A., Akther, N., Al Housani, A., Haris, S. and Hasan, S.W. (2016) Recent Advances in Humidification Dehumidification (HDH) Desalination Processes: Improved Designs and Productivity. Renewable & Sustainable Energy Reviews, 57, 929-944.
https://doi.org/10.1016/j.rser.2015.12.108
[29]  Al-Karaghouli, A. and Kazmerski, L.L. (2013) Energy Consumption and Water Production Cost of Conventional and Renewable-Energy-Powered Desalination Processes. Renewable & Sustainable Energy Reviews, 24, 343-356.
https://doi.org/10.1016/j.rser.2012.12.064
[30]  Burn, S., Hoang, M., Zarzo, D., Olewniak, F., Campos, E., Bolto, B. and Barron, O. (2015) Desalination Techniques—A Review of the Opportunities for Desalination in Agriculture. Desalination, 364, 2-16.
https://doi.org/10.1016/j.desal.2015.01.041
[31]  Fane, A.G. (2018) A Grand Challenge for Membrane Desalination: More Water, Less Carbon. Desalination, 426, 155-163.
https://doi.org/10.1016/j.desal.2017.11.002
[32]  Ahmed, F.E., Hashaikeh, R. and Hilal, N. (2019) Solar Powered Desalination— Technology, Energy and Future Outlook. Desalination, 453, 54-76.
https://doi.org/10.1016/j.desal.2018.12.002
[33]  Srithar, K. and Rajaseenivasan, T. (2018) Recent Fresh Water Augmentation Techniques in Solar Still and HDH Desalination—A Review. Renewable & Sustainable Energy Reviews, 82, 629-644.
https://doi.org/10.1016/j.rser.2017.09.056
[34]  Ghernaout, D., Alghamdi, A., Touahmia, M., Aichouni, M. and Ait Messaoudene, N. (2018) Nanotechnology Phenomena in the Light of the Solar Energy. Journal of Energy, Environmental & Chemical Engineering, 3, 1-8.
https://doi.org/10.11648/j.jeece.20180301.11
[35]  Kabir, E., Kumar, P., Kumar, S., Adelodun, A.A. and Kim, K.-H. (2018) Solar Energy: Potential and Future Prospects. Renewable & Sustainable Energy Reviews, 82, 894-900.
https://doi.org/10.1016/j.rser.2017.09.094
[36]  Al Arni, S., Amous, J. and Ghernaout, D. (2019) On the Perspective of Applying of a New Method for Wastewater Treatment Technology: Modification of the Third Traditional Stage with Two Units, One by Cultivating Microalgae and Another by Solar Vaporization. International Journal of Environmental Sciences & Natural Resources, 16, Article ID: 555934.
https://doi.org/10.19080/IJESNR.2019.16.555934
[37]  Gorjian, S., Ghobadian, B., Ebadi, H., Ketabchi, F. and Khanmohammadi, S. (2020) Applications of Solar PV Systems in Desalination Technologies (Ch. 8). In: Gorjian, S. and Shukla, A., Eds., Photovoltaic Solar Energy Conversion, Elsevier, Amsterdam, 237-274.
https://doi.org/10.1016/B978-0-12-819610-6.00008-9
[38]  Letcher, T.M. (2018) 1 Why Solar Energy? In: Letcher, T.M. and Fthenakis, V.M., Eds., A Comprehensive Guide to Solar Energy Systems, Academic Press, Cambridge, 3-16.
https://doi.org/10.1016/B978-0-12-811479-7.00001-4
[39]  Ogbomo, O.O., Amalu, E.H., Ekere, N.N. and Olagbegi, P.O. (2017) A Review of Photovoltaic Module Technologies for Increased Performance in Tropical Climate. Renewable & Sustainable Energy Reviews, 75, 1225-1238.
https://doi.org/10.1016/j.rser.2016.11.109
[40]  García-Rodríguez, L. (2003) Renewable Energy Applications in Desalination: State of the Art. Solar Energy, 75, 381-393.
https://doi.org/10.1016/j.solener.2003.08.005
[41]  Giwa, A., Yusuf, A., Dindi, A. and Balogun, H.A. (2020) Polygeneration in Desalination by Photovoltaic Thermal Systems: A Comprehensive Review. Renewable & Sustainable Energy Reviews, 130, Article ID: 109946.
https://doi.org/10.1016/j.rser.2020.109946
[42]  Katekar, V.P. and Deshmukh, S.S. (2020) A Review of the Use of Phase Change Materials on Performance of Solar Stills. Journal of Energy Storage, 30, Article ID: 101398.
https://doi.org/10.1016/j.est.2020.101398
[43]  Katekar, V.P. and Deshmukh, S.S. (2020) A Review on Research Trends in Solar Still Designs for Domestic and Industrial Applications. Journal of Cleaner Production, 257, Article ID: 120544.
https://doi.org/10.1016/j.jclepro.2020.120544
[44]  Alnaimat, F. and Klausner, J.F. (2012) Solar Diffusion Driven Desalination for Decentralized Water Production. Desalination, 289, 35-44.
https://doi.org/10.1016/j.desal.2011.12.028
[45]  Klausner, J.F., Li, Y. and Mei, R. (2006) Evaporative Heat and Mass Transfer for the Diffusion Driven Desalination Process. Heat and Mass Transfer, 42, 528-536.
https://doi.org/10.1007/s00231-005-0649-2
[46]  Alnaimat, F., Klausner, J.F. and Mei, R. (2013) Transient Dynamic Response of Solar Diffusion Driven Desalination. Applied Thermal Engineering, 51, 520-528.
https://doi.org/10.1016/j.applthermaleng.2012.09.038
[47]  Zhang, Y., Sivakumar, M., Yang, S., Enever, K. and Ramezanianpour, M. (2018) Application of Solar Energy in Water Treatment Processes: A Review. Desalination, 428, 116-145.
https://doi.org/10.1016/j.desal.2017.11.020
[48]  Darawsheh, I., Islam, M.D. and Banat, F. (2019) Experimental Characterization of a Solar Powered MSF Desalination Process Performance. Thermal Science and Engineering Progress, 10, 154-162.
https://doi.org/10.1016/j.tsep.2019.01.018
[49]  Ali, M.T., Fath, H.E. and Armstrong, P.R. (2011) A Comprehensive Techno-Economical Review of Indirect Solar Desalination. Renewable & Sustainable Energy Reviews, 15, 4187-4199.
https://doi.org/10.1016/j.rser.2011.05.012
[50]  Moustafa, S.M.A., Jarrar, D.I. and El-Mansy, H.I. (1985) Performance of a Self-Regulating Solar Multistage Flash Desalination System. Solar Energy, 35, 333-340.
https://doi.org/10.1016/0038-092X(85)90141-0
[51]  Toth, A.J. (2020) Modelling and Optimisation of Multi-Stage Flash Distillation and Reverse Osmosis for Desalination of Saline Process Wastewater Sources. Membranes, 10, Article No. 265.
https://doi.org/10.3390/membranes10100265
[52]  Askari, I.B. and Ameri, M. (2020) A Techno-Economic Review of Multi Effect Desalination Systems Integrated with Different Solar Thermal Sources. Applied Thermal Engineering, 185, Article ID: 116323.
https://doi.org/10.1016/j.applthermaleng.2020.116323
[53]  Mito, M.T., Ma, X., Albuflasa, H. and Davies, P.A. (2019) Reverse Osmosis (RO) Membrane Desalination Driven by Wind and Solar Photovoltaic (PV) Energy: State of the Art and Challenges for Large-Scale Implementation. Renewable & Sustainable Energy Reviews, 112, 669-685.
https://doi.org/10.1016/j.rser.2019.06.008
[54]  Voutchkov, N. (2018) Energy Use for Membrane Seawater Desalination-Current Status and Trends. Desalination, 431, 2-14.
https://doi.org/10.1016/j.desal.2017.10.033
[55]  Okampo, E.J. and Nwulu, N. (2021) Optimisation of Renewable Energy Powered Reverse Osmosis Desalination Systems: A State-of-the-Art Review. Renewable & Sustainable Energy Reviews, 140, Article ID: 110712.
https://doi.org/10.1016/j.rser.2021.110712
[56]  Karabelas, A., Koutsou, C., Kostoglou, M. and Sioutopoulos, D. (2018) Analysis of Specific Energy Consumption in Reverse Osmosis Desalination Processes. Desalination, 431, 15-21.
https://doi.org/10.1016/j.desal.2017.04.006
[57]  Riedinger, A. and Hickman, C. (1982) Considerations of Energy Consumption in Desalination by Reverse Osmosis. Desalination, 40, 259-270.
https://doi.org/10.1016/S0011-9164(00)88694-4
[58]  Rheinlander, J. and Geyer, D. (2009) Photovoltaic Reverse Osmosis and Electrodialysis. In: Micale, G., Rizzuti, L. and Cipollina, A., Eds., Seawater Desalination, Springer, Berlin, 189-211.
https://doi.org/10.1007/978-3-642-01150-4_8
[59]  Shalaby, S. (2017) Reverse Osmosis Desalination Powered by Photovoltaic and Solar Rankine Cycle Power Systems: A Review. Renewable & Sustainable Energy Reviews, 73, 789-797.
https://doi.org/10.1016/j.rser.2017.01.170
[60]  Mohamed, E.S., Papadakis, G., Mathioulakis, E. and Belessiotis, V. (2008) A Direct Coupled Photovoltaic Seawater Reverse Osmosis Desalination System toward Battery Based Systems—A Technical and Economical Experimental Comparative Study. Desalination, 221, 17-22.
https://doi.org/10.1016/j.desal.2007.01.065
[61]  Abdelgaied, M., Kabeel, A.E., Kandeal, A.W., et al. (2021) Performance Assessment of Solar PV-Driven Hybrid HDH-RO Desalination System Integrated with Energy Recovery Units and Solar Collectors: Theoretical Approach. Energy Conversion and Management, 239, Article ID: 114215.
https://doi.org/10.1016/j.enconman.2021.114215
[62]  Banat, F., Qiblawey, H. and Al-Nasser, Q. (2009) Economic Evaluation of a Small RO Unit Powered by PV Installed in the Village of Hartha, Jordan, Desalin. Water Treatment, 3, 169-174.
https://doi.org/10.5004/dwt.2009.456
[63]  Gencer, E. and Agrawal, R. (2017) Synthesis of Efficient Solar Thermal Power Cycles for Baseload Power Supply. Energy Conversion and Management, 133, 486-497.
https://doi.org/10.1016/j.enconman.2016.10.068
[64]  Manolakos, D., Mohamed, E.S., Karagiannis, I. and Papadakis, G. (2008) Technical and Economic Comparison between PV-RO System and RO-Solar Rankine System. Case Study: Thirasia Island. Desalination, 221, 37-46.
https://doi.org/10.1016/j.desal.2007.01.066
[65]  Patil, V.R., Biradar, V.I., Shreyas, R., Garg, P., Orosz, M.S. and Thirumalai, N. (2017) Technoeconomic Comparison of Solar Organic Rankine Cycle (ORC) and Photovoltaic (PV) Systems with Energy Storage. Renewable Energy, 113, 1250-1260.
https://doi.org/10.1016/j.renene.2017.06.107
[66]  Pichel, N., Vivar, M. and Fuentes, M. (2019) The Problem of Drinking Water Access: A Review of Disinfection Technologies with an Emphasis on Solar Treatment Methods. Chemosphere, 218, 1014-1030.
https://doi.org/10.1016/j.chemosphere.2018.11.205
[67]  Ghernaout, D. and Elboughdiri, N. (2020) Solar Treatment in the Core of the New Disinfection Technologies. Chemical Science & Engineering Research, 2, 6-11.
https://doi.org/10.36686/Ariviyal.CSER.2020.02.04.014
[68]  Gude, V.G. (2015) Energy and Water Autarky of Wastewater Treatment and Power Generation Systems. Renewable & Sustainable Energy Reviews, 45, 52-68.
https://doi.org/10.1016/j.rser.2015.01.055
[69]  Lawrie, K., Mills, A., Figueredo-Fernández, M., Gutiérrez-Alfaro, S., Manzano, M. and Saladin, M. (2015) UV Dosimetry for Solar Water Disinfection (SODIS) Carried out in Different Plastic Bottles and Bags. Sensors and Actuators B: Chemical, 208, 608-615.
https://doi.org/10.1016/j.snb.2014.11.031
[70]  McGuigan, K.G., Conroy, R.M., Mosler, H.-J., du Preez, M., Ubomba-Jaswa, E. and Fernandez-Ibanez, P. (2012) Solar Water Disinfection (SODIS): A Review from Bench-Top to Roof-Top. Journal of Hazardous Materials, 235, 29-46.
https://doi.org/10.1016/j.jhazmat.2012.07.053
[71]  Ghernaout, D. and Elboughdiri, N. (2020) Antibiotics Resistance in Water Mediums: Background, Facts, and Trends. Applied Engineering, 4, 1-6.
https://doi.org/10.4236/oalib.1106337
[72]  Ghernaout, D. and Elboughdiri, N. (2020) Removing Antibiotic-Resistant Bacteria (ARB) Carrying Genes (ARGs): Challenges and Future Trends. Open Access Library Journal, 7, e6003.
https://doi.org/10.4236/oalib.1106003
[73]  Kalt, P., Birzer, C., Evans, H., Liew, A., Padovan, M. and Watchman, M. (2014) A Solar Disinfection Water Treatment System for Remote Communities. Procedia Engineering, 78, 250-258.
https://doi.org/10.1016/j.proeng.2014.07.064
[74]  Nahim-Granados, S., Sánchez Pérez, J.A. and Polo-Lopez, M.I. (2018) Effective Solar Processes in Fresh-Cut Wastewater Disinfection: Inactivation of Pathogenic E. coli O157:H7 and Salmonella enteritidis. Catalysis Today, 313, 79-85.
https://doi.org/10.1016/j.cattod.2017.10.042
[75]  Ghernaout, D. and Elboughdiri, N. (2020) UV-C/H2O2 and Sunlight/H2O2 in the Core of the Best Available Technologies for Dealing with Present Dares in Domestic Wastewater Reuse. Open Access Library Journal, 7, e6161.
https://doi.org/10.4236/oalib.1106161
[76]  Malato, S., Maldonado, M.I., Fernández-Ibánez, P., Oller, I., Polo, I. and Sánchez-Moreno, R. (2016) Decontamination and Disinfection of Water by Solar Photocatalysis: The Pilot Plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing, 42, 15-23.
https://doi.org/10.1016/j.mssp.2015.07.017
[77]  Liu, N., Ming, J., Sharma, A., Sun, X., Kawazoe, N., Chen, G. and Yang, Y. (2021) Sustainable Photocatalytic Disinfection of Four Representative Pathogenic Bacteria Isolated from Real Water Environment by Immobilized TiO2-Based Composite and Its Mechanism. Chemical Engineering Journal, 426, Article ID: 131217.
https://doi.org/10.1016/j.cej.2021.131217
[78]  Acra, A., Karahagopian, Y., Raffoul, Z. and Dajani, R. (1980) Disinfection of Oral Rehydration Solutions by Sunlight. The Lancet, 316, 1257-1258.
https://doi.org/10.1016/S0140-6736(80)92530-1
[79]  Dunlop, P.S.M., Ciavola, M., Rizzo, L. and Byrne, J.A. (2011) Inactivation and Injury Assessment of Escherichia coli during Solar and Photocatalytic Disinfection in LDPE Bags. Chemosphere, 85, 1160-1166.
https://doi.org/10.1016/j.chemosphere.2011.09.006
[80]  Marques, A.R., de Cássia Oliveira Gomes, F., Fonseca, M.P.P., Parreira, J.S. and Pinheiro Santos, V. (2013) Efficiency of PET Reactors in Solar Water Disinfection for Use in Southeastern Brazil. Solar Energy, 87, 158-167.
https://doi.org/10.1016/j.solener.2012.10.016
[81]  Navntoft, C., Ubomba-Jaswa, E., McGuigan, K. and Fernández-Ibánez, P. (2008) Effectiveness of Solar Disinfection Using Batch Reactors with Non-Imaging Aluminium Reflectors under Real Conditions: Natural Well-Water and Solar Light. Journal of Photochemistry and Photobiology B, 93, 155-161.
https://doi.org/10.1016/j.jphotobiol.2008.08.002
[82]  Martín-Domínguez, A., Alarcón-Herrera, Ma.T., Martín-Domínguez, I.R. and González-Herrera, A. (2005) Efficiency in the Disinfection of Water for Human Consumption in Rural Communities Using Solar Radiation. Solar Energy, 78, 31-40.
https://doi.org/10.1016/j.solener.2004.07.005
[83]  Ubomba-Jaswa, E., Fernández-Ibánez, P., Navntoft, C., Polo-López, M.I. and McGuigan, K.G. (2010) Investigating the Microbial Inactivation Efficiency of a 25 L Batch Solar Disinfection (SODIS) Reactor Enhanced with a Compound Parabolic Collector (CPC) for Household Use. Journal of Chemical Technology & Biotechnology, 85, 1028-1037.
https://doi.org/10.1002/jctb.2398
[84]  Giannakis, S., Polo-López, M.I., Spuhler, D., Pérez, J.A.S., Ibánez, P.F. and Pulgarin, C. (2016) Solar Disinfection Is an Augmentable, in Situ-Generated Photo-Fenton Reaction—Part 2: A Review of the Applications for Drinking Water and Wastewater Disinfection. Applied Catalysis B, 198, 431-446.
https://doi.org/10.1016/j.apcatb.2016.06.007
[85]  Kumar, A., Hasija, V., Sudhaik, A., et al. (2022) The Practicality and Prospects for Disinfection Control by Photocatalysis during and Post-Pandemic: A Critical Review. Environmental Research, 209, Article ID: 112814.
https://doi.org/10.1016/j.envres.2022.112814
[86]  Ghernaout, D., Elboughdiri, N., Ghareba, S. and Salih, A. (2020) Electrochemical Advanced Oxidation Processes (EAOPs) for Disinfecting Water-Fresh Perspectives. Open Access Library Journal, 7, e6257.
https://doi.org/10.4236/oalib.1106257
[87]  Chong, M.N., Jin, B., Chow, C.W. and Saint, C. (2010) Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Research, 44, 2997-3027.
https://doi.org/10.1016/j.watres.2010.02.039
[88]  Ahmed, S., Rasul, M., Martens, W.N., Brown, R. and Hashib, M. (2010) Heterogeneous Photocatalytic Degradation of Phenols in Wastewater: A Review on Current Status and Developments. Desalination, 261, 3-18.
https://doi.org/10.1016/j.desal.2010.04.062
[89]  Malato, S., Fernández-Ibánez, P., Maldonado, M.I., Blanco, J. and Gernjak, W. (2009) Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends. Catalysis Today, 147, 1-59.
https://doi.org/10.1016/j.cattod.2009.06.018
[90]  He, J., Kumar, A., Khan, M. and Lo, I.M.C. (2021) Critical Review of Photocatalytic Disinfection of Bacteria: From Noble Metals- and Carbon Nanomaterials-TiO2 Composites to Challenges of Water Characteristics and Strategic Solutions. Science of the Total Environment, 758, Article ID: 143953.
https://doi.org/10.1016/j.scitotenv.2020.143953
[91]  Bianco, A., Polo-López, M.I., Fernández-Ibánez, P., Brigante, M. and Mailhot, G. (2017) Disinfection of Water Inoculated with Enterococcus faecalis Using Solar/ Fe(III)EDDS-H2O2 or S2O82- Process. Water Research, 118, 249-260.
https://doi.org/10.1016/j.watres.2017.03.061
[92]  Ghernaout, D., Elboughdiri, N. and Ghareba, S. (2020) Fenton Technology for Wastewater Treatment: Dares and Trends. Open Access Library Journal, 7, e6045.
https://doi.org/10.4236/oalib.1106045
[93]  Ghernaout, D. and Elboughdiri, N. (2020) Vacuum-UV Radiation at 185 nm for Disinfecting Water. Chemical Science & Engineering Research, 2, 12-17.
https://doi.org/10.36686/Ariviyal.CSER.2020.02.04.015
[94]  Ghernaout, D. and Elboughdiri, N. (2020) Should We Forbid the Consumption of Antibiotics to Stop the Spread of Resistances in Nature? Open Access Library Journal, 7, e6138.
https://doi.org/10.4236/oalib.1106138
[95]  Ghernaout, D. (2020) Demobilizing Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes by Electrochemical Technology: New Insights. Open Access Library Journal, 7, e6685.
https://doi.org/10.4236/oalib.1106685
[96]  O’Dowd, K. and Pillai, S.C. (2020) Photo-Fenton Disinfection at Near Neutral pH: Process, Parameter Optimization and Recent Advances. Journal of Environmental Chemical Engineering, 8, Article ID: 104063.
https://doi.org/10.1016/j.jece.2020.104063
[97]  Ng, T.W., An, T., Li, G., et al. (2015) The Role and Synergistic Effect of the Light Irradiation and H2O2 in Photocatalytic Inactivation of Escherichia coli. Journal of Photochemistry and Photobiology B, 149, 164-171.
https://doi.org/10.1016/j.jphotobiol.2015.06.007
[98]  Pichel, N., Vivar, M. and Fuentes, M. (2018) Results from a First Optimization Study of a Photovoltaic and Solar Disinfection System (SOLWAT) for Simultaneous Energy Generation and Water Purification. Energy Conversion and Management, 176, 30-38.
https://doi.org/10.1016/j.enconman.2018.09.017
[99]  Wang, Y., Jin, Y., Huang, Q., et al. (2016) Photovoltaic and Disinfection Performance Study of a Hybrid Photovoltaic-Solar Water Disinfection System. Energy, 106, 757-764.
https://doi.org/10.1016/j.energy.2016.03.112
[100]  Vivar, M., Skryabin, I., Everett, V. and Blakers, A. (2010) A Concept for a Hybrid Solar Water Purification and Photovoltaic System. Solar Energy Materials & Solar Cells, 94, 1772-1782.
https://doi.org/10.1016/j.solmat.2010.05.045
[101]  Yang, Y.-Y., Feng, H.-P., Niu, C.-G., et al. (2021) Constructing a Plasma-Based Schottky Heterojunction for Near-Infrared-Driven Photothermal Synergistic Water Disinfection: Synergetic Effects and Antibacterial Mechanisms. Chemical Engineering Journal, 426, Article ID: 131902.
https://doi.org/10.1016/j.cej.2021.131902
[102]  Ghernaout, D., Boudjemline, A. and Elboughdiri, N. (2020) Electrochemical Engineering in the Core of the Dye-Sensitized Solar Cells (DSSCs). Open Access Library Journal, 7, e6178.
https://doi.org/10.4236/oalib.1106178
[103]  Fiorentino, A., Ferro, G., Alferez, M.C., Polo-López, M.I., Fernández-Ibanez, P. and Rizzo, L. (2015) Inactivation and Regrowth of Multidrug Resistant Bacteria in Urban Wastewater after Disinfection by Solar-Driven and Chlorination Processes. Journal of Photochemistry and Photobiology B, 148, 43-50.
https://doi.org/10.1016/j.jphotobiol.2015.03.029
[104]  Shekoohiyan, S., Rtimi, S., Moussavi, G., Giannakis, S. and Pulgarin, C. (2019) Enhancing Solar Disinfection of Water in PET Bottles by Optimized In-Situ Formation of Iron Oxide Films. From Heterogeneous to Homogeneous Action Modes with H2O2 vs. O2 Part 1: Iron Salts as Oxide Precursors. Chemical Engineering Journal, 358, 211-224.
https://doi.org/10.1016/j.cej.2018.09.219
[105]  García-Gil, á., Feng, L., Moreno-SanSegundo, J., Giannakis, S., Pulgarín, C. and Marugán, J. (2022) Mechanistic Modelling of Solar Disinfection (SODIS) Kinetics of Escherichia coli, Enhanced with H2O2 Part 1: The Dark Side of Peroxide. Chemical Engineering Journal, 439, Article ID: 135709.
https://doi.org/10.1016/j.cej.2022.135709
[106]  McMichael, S., Waso, M., Reyneke, B., Khan, W., Byrne, J.A. and Fernandez-Ibanez, P. (2021) Electrochemically Assisted Photocatalysis for the Disinfection of Rainwater under Solar Irradiation. Applied Catalysis B, 281, Article ID: 119485.
https://doi.org/10.1016/j.apcatb.2020.119485
[107]  Panagopoulos, A. and Haralambous, K.-J. (2020) Environmental Impacts of Desalination and Brine Treatment—Challenges and Mitigation Measures. Marine Pollution Bulletin, 161, Article ID: 111773.
https://doi.org/10.1016/j.marpolbul.2020.111773
[108]  Lattemann, S. and Hopner, T. (2008) Environmental Impact and Impact Assessment of Seawater Desalination. Desalination, 220, 1-15.
https://doi.org/10.1016/j.desal.2007.03.009
[109]  Ghernaout, D. (2019) Brine Recycling: Towards Membrane Processes as the Best Available Technology. Applied Engineering, 3, 71-84.
[110]  Ghernaout, D. (2020) Desalination Engineering: Environmental Impacts of the Brine Disposal and Their Control. Open Access Library Journal, 7, e6777.
[111]  Ghernaout, D., Ghernaout, B. and Kellil, A. (2009) Natural Organic Matter Removal and Enhanced Coagulation as a Link between Coagulation and Electrocoagulation. Desalination and Water Treatment, 2, 203-222.
https://doi.org/10.5004/dwt.2009.116
[112]  Ghernaout, D. (2020) Natural Organic Matter Removal in the Context of the Performance of Drinking Water Treatment Processes—Technical Notes. Open Access Library Journal, 7, e6751.
[113]  Panagopoulos, A., Haralambous, K.-J. and Loizidou, M. (2019) Desalination Brine Disposal Methods and Treatment Technologies—A Review. Science of the Total Environment, 693, Article ID: 133545.
https://doi.org/10.1016/j.scitotenv.2019.07.351
[114]  Mezher, T., Fath, H., Abbas, Z. and Khaled, A. (2011) Techno-Economic Assessment and Environmental Impacts of Desalination Technologies. Desalination, 266, 263-273.
https://doi.org/10.1016/j.desal.2010.08.035
[115]  Elsaid, K., Sayed, E.T., Abdelkareem, M.A., Baroutaji, A. and Olabi, A. (2020) Environmental Impact of Desalination Processes: Mitigation and Control Strategies. Science of the Total Environment, 740, Article ID: 140125.
https://doi.org/10.1016/j.scitotenv.2020.140125
[116]  Mannan, M., Alhaj, M., Mabrouk, A.N. and Al-Ghamdi, S.G. (2019) Examining the Life-Cycle Environmental Impacts of Desalination: A Case Study in the State of Qatar. Desalination, 452, 238-246.
https://doi.org/10.1016/j.desal.2018.11.017

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413