全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学及分子对接技术探讨头花蓼治疗糖尿病的预防作用
Mechanism of Cephalophyllum cephalus Intervention in Diabetes Based on Network Pharmacology and Molecular Docking Technology

DOI: 10.12677/HJMCe.2023.112011, PP. 81-92

Keywords: 网络药理学,分子对接,糖尿病,头花蓼
Network Pharmacology
, Molecular Docking, Diabetes, Polygonum cephalicum

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:借助网络药理学及分子对接方法探讨头花蓼治疗糖尿病的作用机制,为扩大头花蓼用药范围提供依据。方法:通过文献研究及Swiss数据库筛选得到头花蓼活性成分并分析相关作用蛋白靶点,借助OMIM、GeneCards、DRUG BANK、DisGeNet等数据库分析糖尿病基因靶点,并取交集;借助STRING数据库及Cytoscape软件构建PPI网络关系并得到头花蓼干预糖尿病关键靶点;借助metascape数据库进行生物富集分析;使用autodock软件进行核心化合物–蛋白分子对接。结果:得到头花蓼核心化合物为49个,涉及45个蛋白靶点,其中与糖尿病相关核心靶点为ALB、EGFR、SRC、CASP3等;在60组分子对接结果中,Affinity < ?3 kcal?mol?1的对接结果有45个,提示多数化合物–蛋白有较大结合能;KEGG富集分析结果显示关键通路为Lipid and atherosclerosis、Pathways in cancer、IL-17 signaling pathway等。结论:头花蓼干预糖尿病依靠多通路、多靶点协调作用,其主要活性成分为槲皮素、红景天甘、木犀草素、齐墩果酸等,通过ALB、EGFR、SRC、CASP3等蛋白作用与Lipid and atherosclerosis、Pathways in cance、IL-17 signaling pathway等通路发挥治疗糖尿病作用。
Objective: To explore the mechanism of action of Polygonum cuspidatum in the treatment of diabetes mellitus with the help of network pharmacology and molecular docking methods, and to provide a basis for expanding the scope of drug use of Polygonum cuspidatum. Methods: We obtained the active ingredients of Polygonum cuspidatum through literature research and screening of Swiss database and analyzed the related protein targets, analyzed the diabetes gene targets with the help of OMIM, GeneCards, DRUG BANK, DisGeNet and other databases, and took the intersection; constructed PPI network relationships with the help of STRING database and Cytoscape software and obtained the key targets of Polygonum cuspidatum for diabetes intervention were obtained by using STRING database and Cytoscape software; bioenrichment analysis was performed by using metascape database; core compound-protein molecular docking was performed by using autodock software. Results: 49 core compounds were obtained, involving 45 protein targets, including ALB, EGFR, SRC and CASP3, which are related to diabetes. Among the 60 groups of molecular docking results, 45 docking results with Affinity < ?3 kcal?mol?1 suggested that most of the compounds had large binding energy to proteins; the results of KEGG enrichment analysis showed that the key pathways were Lipid and atherosclerosis, Pathways in cancer, IL-17 signaling pathway, etc. Conclusion: Polygonum cuspidatum intervenes in diabetes mellitus relying on multi-pathway and multi-target coordination, and its main active ingredients are quercetin, rhodopsin, lignan, oleanolic acid, etc., which act with Lipid and atherosclerosis, Pathways in cance, IL-17 signaling pathway through ALB, EGFR, SRC, CASP3 and other proteins signaling pathway and other pathways to play a role in the treatment of diabetes.

References

[1]  中国2型糖尿病防治指南(2010年版) [J]. 中国糖尿病杂志, 2012, 20(1): 81-117.
[2]  赵英魁. 头花蓼多酚的制备工艺及其糖尿病模型下的代谢产物鉴定研究[D]: [硕士学位论文]. 上海: 中国人民解放军海军军医大学, 2020.
[3]  王秋月, 关清华, 陈芬琴. 2型糖尿病口服降糖药的应用策略及安全性评价[J]. 实用药物与临床, 2006, 9(6): 331-334.
[4]  Huang, D., Du, Z., Chen, Y., et al. (2021) Bio-Guided Isolation of Two New Hypoglycemic Triterpenoid Saponins from Polygonum capitatum. Drug Design, Development and Therapy, 15, 5001-5010.
https://doi.org/10.2147/DDDT.S341354
[5]  王金霞. 热淋清颗粒对慢性前列腺炎患者炎性因子及性功能障碍的影响[J]. 中国性科学, 2020, 29(10): 129-132.
[6]  American Diabetes Association (2013) Diagnosis and Classi-fication of Diabetes mellitus. Diabetes Care, 36, S67-S74.
https://doi.org/10.2337/dc13-S067
[7]  康继宏, 宁光, 吴家睿, 管又飞. 中国糖尿病防治研究的现状和挑战[J]. 转化医学研究(电子版), 2012, 2(3): 1-24.
[8]  Kim, D.-S. and Scherer, P.E. (2021) Obesity, Diabetes, and In-creased Cancer Progression. Diabetes & Metabolism Journal, 45, 799-812.
https://doi.org/10.4093/dmj.2021.0077
[9]  田风胜, 苏秀海, 王元松. 糖尿病肾病中医病名规范化研究[J]. 中华中医药杂志, 2009, 24(11): 1424-1426.
[10]  田佳星, 李敏, 仝小林. 过食肥甘与糖尿病关系的历史沿革[J]. 中医杂志, 2018, 59(12): 1002-1005+1010.
[11]  韩永明, 张六通, 邱幸凡. 从“热毒”论糖尿病的病因病机初探[J]. 光明中医, 2010, 25(4): 553-556.
[12]  张宁. 用张仲景经方辨治消渴临证探究[J]. 中医杂志, 2007, 48(2): 118-120.
[13]  吴崑. 黄帝内经素问吴注[M]. 北京: 学苑出版社, 2001: 12.
[14]  华佗. 中藏经[M]. 北京: 人民卫生出版社, 2007: 40-41.
[15]  赵英魁. 头花蓼多酚的制备工艺及其糖尿病模型下的代谢产物鉴定研究[D]: [硕士学位论文]. 上海: 中国人民解放军海军军医大学, 2020.
[16]  国家中医药管理局中华本草编委会. 中华本草[M]. 上海: 上海科学技术出版社, 1999: 2646.
[17]  陈百泉, 李昌勤, 常星, 康文艺. 头花蓼对α-葡萄糖苷酶的抑制活性研究[J]. 中国实验方剂学杂志, 2010, 16(8): 151-153.
[18]  李咏梅, 龚元. 头花蓼的化学成分及药理研究进展[J]. 贵州大学学报(自然科学版), 2007, 24(2): 205-207.
[19]  刘明, 罗春丽, 张永萍, 邱德文. 头花蓼、飞龙掌血的镇痛抗炎及利尿作用研究[J]. 贵州医药, 2007(4): 370-371.
[20]  刘志军, 戚进, 朱丹妮, 余伯阳. 头花蓼化学成分及抗氧化活性研究[J]. 中药材, 2008, 31(7): 995-998.
[21]  国家药典委员会.中华人民共和国药典: 一部[M]. 北京: 中国医药科技出版社, 2020: 1387.
[22]  Yao, Z., Gu, Y., Zhang, Q., et al. (2019) Estimated Daily Quercetin Intake and Association with the Prevalence of Type 2 Diabetes Mellitus in Chinese Adults. European Journal of Nutrition, 58, 819-830.
https://doi.org/10.1007/s00394-018-1713-2
[23]  Li, D., Jiang, C., Mei, G., et al. (2020) Quercetin Alleviates Fer-roptosis of Pancreatic β Cells in Type 2 Diabetes. Nutrients, 12, Article No. 2954.
https://doi.org/10.3390/nu12102954
[24]  Zheng, T., Bian, F., Chen, L., Wang, Q. and Jin, S. (2019) Beneficial Ef-fects of Rhodiola and Salidroside in Diabetes: Potential Role of AMP-Activated Protein Kinase. Molecular Diagnosis & Therapy, 23, 489-498.
https://doi.org/10.1007/s40291-019-00402-4
[25]  Li, L., Luo, W., Qian, Y., et al. (2019) Luteolin Protects Against Diabetic Cardiomyopathy by Inhibiting NF-κB-Me- diated Inflammation and Activating the Nrf2-Mediated Antioxidant Responses. Phytomedicine, 59, Article ID: 152774.
https://doi.org/10.1016/j.phymed.2018.11.034
[26]  Castellano, J.M., Ramos-Romero, S. and Perona, J.S. (2022) Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients, 14, Article No. 623.
https://doi.org/10.3390/nu14030623
[27]  Matulevicius, S., Rohatgi, A., Khera, A., et al. (2008) The Association between Plasma Caspase-3, Atherosclerosis, and Vascular Function in the Dallas Heart Study. Apoptosis, 13, 1281-1289.
https://doi.org/10.1007/s10495-008-0254-1
[28]  Veluthakal, R., Arora, D.K., Goalstone, M.L., Kowluru, R.A. and Kowluru, A. (2016) Metabolic Stress Induces Caspase-3 Mediated Degradation and Inactivation of Farnesyl and Geranylgeranyl Transferase Activities in Pancreatic β-Cells. Cellular Physiology and Biochemistry, 39, 2110-2120.
https://doi.org/10.1159/000447907
[29]  Cui, X., Qian, D.-W., Jiang, S., et al. (2018) Scutellariae Radix and Cop-tidis Rhizoma Improve Glucose and Lipid Metabolism in T2DM Rats via Regulation of the Metabolic Profiling and MAPK/PI3K/Akt Signaling Pathway. International Journal of Molecular Sciences, 19, Article No. 3634.
https://doi.org/10.3390/ijms19113634
[30]  Khalid, M., Petroianu, G. and Adem, A. (2022) Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules, 12, Article No. 542.
https://doi.org/10.3390/biom12040542
[31]  王俊. NEFA、ALB、β2-MG和CREA在2型糖尿病肾病中的临床诊断价值[J]. 临床研究, 2019, 27(9): 154-155.
[32]  García-Jiménez, C., García-Martínez, J.M., Chocarro-Calvo, A. and De la Vieja, A. (2013) A New Link between Diabetes and Cancer: Enhanced WNT/β-Catenin Signaling by High Glucose. Journal of Molecular Endocrinology, 52, R51-R66.
https://doi.org/10.1530/JME-13-0152
[33]  Hopkins, B.D., Goncalves, M.D. and Cantley, L.C. (2020) Insulin-PI3K Signalling: An Evolutionarily Insulated Metabolic Driver of Cancer. Nature Reviews Endocrinology, 16, 276-283.
https://doi.org/10.1038/s41574-020-0329-9
[34]  Samuel, S.M., Varghese, E., Varghese, S. and Büsselberg, D. (2018) Challenges and Perspectives in the Treatment of Diabetes Associated Breast Cancer. Cancer Treatment Reviews, 70, 98-111.
https://doi.org/10.1016/j.ctrv.2018.08.004
[35]  Poznyak, A., Grechko, A.V., Poggio, P., et al. (2020) The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Interna-tional Journal of Molecular Sciences, 21, Article No. 1835.
https://doi.org/10.3390/ijms21051835
[36]  Xiao, E., Mattos, M., Vieira, G.H.A., et al. (2017) Diabetes Enhances IL-17 Expression and Alters the Oral Microbiome to In-crease Its Pathogenicity. Cell Host & Microbe, 22, 120-128.
https://doi.org/10.1016/j.chom.2017.06.014
[37]  Xiao, W., Li, S., Pacios, S., Wang, Y. and Graves, D.T. (2016) Bone Remodeling under Pathological Conditions. Frontiers of Oral Biology, 18, 17-27.
https://doi.org/10.1159/000351896

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413