|
赤铁矿纳米材料的合成方法及应用
|
Abstract:
赤铁矿因其热力学稳定、存在范围广、环境无害、催化特性突出而在各种氧化铁和(氧)氢氧化物中备受关注。赤铁矿纳米晶体在自然界中含量丰富,它们对元素和环境污染物的命运和转化的影响是深远的,在生物医学、太阳能电池、锂离子电池、环境修复等领域被广泛研究。因此,本文重点介绍了当前不同晶面和不同形态赤铁矿的合成方法与环境应用的最新进展。
Hematite has attracted much attention in various iron oxides and hydroxides because of its thermodynamic stability, wide range of existence, environmental protection, and outstanding catalytic properties. Hematite nanocrystals are abundant in nature, and their influence on the fate and trans- formation of elements and environmental pollutants is profound, and they have been widely studied in biomedicine, solar cells, lithium-ion batteries, environmental remediation, and other fields. In this paper, the synthesis methods and environmental applications of hematite with different crystal faces and morphologies are introduced.
[1] | Zhou, X., Yang, H., Wang, C., et al. (2010) Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-Dimensional Iron Oxide Particles. The Journal of Physical Chemistry C, 114, 17051-17061.
https://doi.org/10.1021/jp103816e |
[2] | Wu, C., Yin, P., Zhu, X., OuYang, C.Z. and Xie, Y. (2006) Synthesis of Hematite (α-Fe2O3) Nanorods: Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors. The Journal of Physical Chemistry B, 110, 17806-17812. https://doi.org/10.1021/jp0633906 |
[3] | Vuong, D.D., Phuoc, L.H., Hien, V.X. and Chien, N.D. (2020) Hydrothermal Synthesis and Ethanol-Sensing Properties of α-Fe2O3 Hollow Nanospindles. Materials Science in Semiconductor Processing, 107, Article ID: 104861.
https://doi.org/10.1016/j.mssp.2019.104861 |
[4] | Zheng, Y., Cheng, Y., Wang, Y., et al. (2006) Quasicubic α-Fe2O3 Nanoparticles with Excellent Catalytic Performance. The Journal of Physical Chemistry B, 110, 3093-3097. https://doi.org/10.1021/jp056617q |
[5] | Zhou, H. and Wong, S.S. (2008) A Facile and Mild Synthesis of 1-D ZnO, CuO, and α-Fe2O3 Nanostructures and Nanostructured Arrays. ACS Nano, 2, 944-958. https://doi.org/10.1021/nn700428x |
[6] | Kay, A., Cesar, I. and Gr?tzel, M. (2006) New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films. Journal of the American Chemical Society, 128, 15714-15721. https://doi.org/10.1021/ja064380l |
[7] | Huang, X.P., Hou, X.J., Zhao, J.C. and Zhang, L.Z. (2016) Hematite Facet Confined Ferrous Ions as High Efficient Fenton Catalysts to Degrade Organic Contaminants by Lowering H2O2 Decomposition Energetic Span. Applied Catalysis B: Environmental, 181, 127-137. https://doi.org/10.1016/j.apcatb.2015.06.061 |
[8] | Vayssieres, L., Beermann, N., Lindquist, S.E. and Hagfeldt, A. (2001) Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides. Chemistry of Materials, 13, 233-235.
https://doi.org/10.1021/cm001202x |
[9] | Zhang, R., Liu, D.B. and Yang, P.J.R.A. (2019) Morphology Control of α-Fe2O3 towards Super Electrochemistry Performance. RSC Advances, 9, 21947-21955. https://doi.org/10.1039/C9RA01675A |
[10] | Kushwaha, P. and Chauhan, P. (2022) Influence of Annealing Temperature on Microstructural and Magnetic Properties of Fe2O3 Nanoparticles Synthesized via Sol-Gel Method. Inorganic and Nano-Metal Chemistry, 52, 937-950.
https://doi.org/10.1080/24701556.2021.2025108 |
[11] | Li, Y., Xiang, J., Qian, F., et al. (2006) Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors. Nano Letters, 6, 1468-1473. https://doi.org/10.1021/nl060849z |
[12] | Qian, F., Gradecak, S., Li, Y., Wen, C.Y. and Lieber, C.M. (2005) Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes. Nano Letters, 5, 2287-2291. https://doi.org/10.1021/nl051689e |
[13] | Atacan, K., Güy, N., Boutra, B. and ?zacar, M. (2020) Enhancement of Photoelectrochemical Hydrogen Production by Using a Novel Ternary Ag2CrO4/GO/MnFe2O4 Photocatalyst. International Journal of Hydrogen Energy, 45, 17453- 17467. https://doi.org/10.1016/j.ijhydene.2020.04.268 |
[14] | Lin, Y., Zhou, S., Sheehan, S.W. and Wang, D.W. (2011) Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting. Journal of the American Chemical Society, 133, 2398-2401. https://doi.org/10.1021/ja110741z |
[15] | Wu, J.J., Lee, Y.L., Chiang, H.H. and Wong, D.K.P. (2006) Growth and Magnetic Properties of Oriented α-Fe2O3 Nanorods. The Journal of Physical Chemistry B, 110, 18108-18111. https://doi.org/10.1021/jp0644661 |
[16] | Zhang, S., Gao, B. and Leng, W. (2023) Kinetic Difference in Water Photooxidation between TiO2 and WO3 Electrodes by Rate Law Analysis. ACS Applied Energy Materials, 6, 1973-1981. https://doi.org/10.1021/acsaem.2c03895 |
[17] | Martinson, A.B.F., Devries, M.J., Libera, J.A., et al. (2011) Atomic Layer Deposition of Fe2O3 Using Ferrocene and Ozone. The Journal of Physical Chemistry C, 115, 4333-4339. https://doi.org/10.1021/jp110203x |
[18] | Rao, P.M. and Zheng, X. (2009) Rapid Catalyst-Free Flame Synthesis of Dense, Aligned α-Fe2O3 Nanoflake and CuO Nanoneedle Arrays. Nano Letters, 9, 3001-3006. https://doi.org/10.1021/nl901426t |
[19] | Jickells, T.D., An, Z.S., Andersen, K.K., et al. (2005) Global Iron Connections between Desert Dust, Ocean Biogeochemistry, and Climate. Science, 308, 67-71. https://doi.org/10.1126/science.1105959 |
[20] | Maabong, K., Machatine, A.G.J., Mwankemwa, B.S., et al. (2018) Nanostructured Hematite Thin Films for Photoelectrochemical Water Splitting. Physica B: Condensed Matter, 535, 67-71.
https://doi.org/10.1016/j.physb.2017.06.054 |
[21] | Perednis, D. and Gauckler, L.J. (2005) Thin Film Deposition Using Spray Pyrolysis. Journal of Electroceramics, 14, 103-111. https://doi.org/10.1007/s10832-005-0870-x |
[22] | Nyarige, J.S., Krüger, T.P.J. and Diale, M. (2020) Structural and Optical Properties of Hematite and L-Arginine/He- matite Nanostructures Prepared by Thermal Spray Pyrolysis. Surfaces and Interfaces, 18, Article ID: 100394.
https://doi.org/10.1016/j.surfin.2019.100394 |
[23] | Diab, M. and Mokari, T. (2014) Thermal Decomposition Approach for the Formation of α-Fe2O3 Mesoporous Photoanodes and an α-Fe2O3/CoO Hybrid Structure for Enhanced Water Oxidation. Inorganic Chemistry, 53, 2304-2309.
https://doi.org/10.1021/ic403027r |
[24] | Chemelewski, W.D., Hahn, N.T. and Mullins, C.B. (2012) Effect of Si Doping and Porosity on Hematite’s (α-Fe2O3) Photoelectrochemical Water Oxidation Performance. The Journal of Physical Chemistry C, 116, 5255-5261.
https://doi.org/10.1021/jp210877u |
[25] | Zhang, K., Shi, X., Kim, J.K., Lee, J.S. and Park, J.H. (2013) Inverse Opal Structured α-Fe2O3 on Graphene Thin Films: Enhanced Photo-Assisted Water Splitting. Nanoscale, 5, 1939-1944. https://doi.org/10.1039/c2nr33036a |
[26] | Mao, A., Shin, K., Kim, J.K., et al. (2011) Controlled Synthesis of Vertically Aligned Hematite on Conducting Substrate for Photoelectrochemical Cells: Nanorods versus Nanotubes. ACS Applied Materials & Interfaces, 3, 1852-1858.
https://doi.org/10.1021/am200407t |
[27] | Latempa, T.J., Feng, X., Paulose, M. and Grimes, C.A. (2009) Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties. The Journal of Physical Chemistry C, 113, 16293-16298. https://doi.org/10.1021/jp904560n |
[28] | Meng, Q., Wang, Z., Chai, X., et al. (2016) Fabrication of Hematite (α-Fe2O3) Nanoparticles Using Electrochemical Deposition. Applied Surface Science, 368, 303-308. https://doi.org/10.1016/j.apsusc.2016.02.007 |
[29] | Zhang, M.L., Luo, W.J., Li, Z.S., Yu, T. and Zou, Z.G. (2010) Improved Photoelectrochemical Responses of Si and Ti Codoped α-Fe2O3 Photoanode Films. Applied Physics Letters, 97, Article 042105. https://doi.org/10.1063/1.3470109 |
[30] | Hitam, C.N.C. and Jalil, A.A. (2020) A Review on Exploration of Fe2O3 Photocatalyst towards Degradation of Dyes and Organic Contaminants. Journal of Environmental Management, 258, Article ID: 110050.
https://doi.org/10.1016/j.jenvman.2019.110050 |
[31] | Yan, H., Su, X., Yang, C., Wang, J.D. and Niu, C.G. (2014) Improved Photocatalytic and Gas Sensing Properties of α-Fe2O3 Nanoparticles Derived from β-FeOOH Nanospindles. Ceramics International, 40, 1729-1733. |
[32] | https://doi.org/10.1016/j.ceramint.2013.07.070 |
[33] | Da Silva, L.F., Catto, A.C., Bernardini, S., et al. (2021) BTEX Gas Sensor Based on Hematite Microrhombuses. Sensors and Actuators B: Chemical, 326, Article ID: 128817. https://doi.org/10.1016/j.snb.2020.128817 |
[34] | Taylor, K.G. and Konhauser, K.O.J.E. (2011) Iron in Earth Surface Systems: A Major Player in Chemical and Biological Processes. Elements, 7, 83-88. https://doi.org/10.2113/gselements.7.2.83 |
[35] | Schwertmann, U. and Cornell, R.M. (1991) Iron Oxides in the Laboratory: Preparation and Characterization. Wiley- VCH, Weinheim. |
[36] | Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-VCH, Weinheim. https://doi.org/10.1002/3527602097 |
[37] | He, K., Song, B., Zhan, L., et al. (2016) Size-Controlled Synthesis of Hematite Mesocrystals. CrystEngComm, 18, 754-758. https://doi.org/10.1039/C5CE00849B |
[38] | Ling, D., Lee, N. and Hyeon, T. (2015) Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 48, 1276-1285.
https://doi.org/10.1021/acs.accounts.5b00038 |
[39] | Huang, X.P., Hou, X.J., Zhang, X., Rosso, K.M. and Zhang, L.Z. (2018) Facet-Dependent Contaminant Removal Properties of Hematite Nanocrystals and Their Environmental Implications. Environmental Science: Nano, 5, 1790- 1806. https://doi.org/10.1039/C8EN00548F |
[40] | Liu, T., Xue, L., Guo, X., Huang, Y. and Zheng, C.G. (2016) DFT and Experimental Study on the Mechanism of Elemental Mercury Capture in the Presence of HCl on α-Fe2O3(001). Environmental Science & Technology, 50, 4863- 4868. https://doi.org/10.1021/acs.est.5b06340 |
[41] | Chen, L., Yang, X., Chen, J., et al. (2010) Continuous Shape- and Spectroscopy-Tuning of Hematite Nanocrystals. Inorganic Chemistry, 49, 8411-8420. https://doi.org/10.1021/ic100919a |
[42] | Ouyang, J., Pei, J., Kuang, Q., Xie, Z.X. and Zheng, L.S. (2014) Supersaturation-Controlled Shape Evolution of α-Fe2O3 Nanocrystals and Their Facet-Dependent Catalytic and Sensing Properties. ACS Applied Materials & Interfaces, 6, 12505-12514. https://doi.org/10.1021/am502358g |
[43] | Sun, L., Zhan, W., Li, Y.A., et al. (2018) Understanding the Facet-Dependent Catalytic Performance of Hematite Micro- crystals in a CO Oxidation Reaction. Inorganic Chemistry Frontiers, 5, 2332-2339.
https://doi.org/10.1039/C8QI00548F |
[44] | Liang, X., Wang, X., Zhuang, J., et al. (2006) Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals. Advanced Functional Materials, 16, 1805-1813. https://doi.org/10.1002/adfm.200500884 |
[45] | Wang, J. and Rustad, J.R. (2006) A Simple Model for the Effect of Hydration on the Distribution of Ferrous Iron at Reduced Hematite (012) Surfaces. Geochimica et Cosmochimica Acta, 70, 5285-5292.
https://doi.org/10.1016/j.gca.2006.08.022 |
[46] | Ryu, G.M., Lee, M., Choi, D.S. and Park, C.B. (2015) A Hematite-Based Photoelectrochemical Platform for Visible Light-Induced Biosensing. Journal of Materials Chemistry B, 3, 4483-4486. https://doi.org/10.1039/C5TB00478K |
[47] | Barik, R. and Mohapatra, M. (2015) Solvent Mediated Surface Engineering of α-Fe2O3 Nanomaterials: Facet Sensitive Energy Storage Materials. CrystEngComm, 17, 9203-9215. https://doi.org/10.1039/C5CE01369K |