全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biophysics  2023 

单细胞数据库建设的研究进展
Research Progress on Single-Cell Database Construction

DOI: 10.12677/BIPHY.2023.112003, PP. 30-43

Keywords: scRNA-seq,数据库,单细胞分析,标记基因,COVID-19;Single-Cell RNA Sequencing, Database, Single-Cell Analysis, Marker Gene, COVID-19

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,随着以单细胞转录组测序(Single-cell RNA sequencing, scRNA-seq)技术为重点的大规模生物学实验的兴起,研究人员可以在细胞水平上展开更加深入的研究。基于scRNA-seq技术的优势,尤其是其对研究细胞异质性的能力,越来越多的单细胞数据库涌现出来,为疾病的发生和治疗提供了研究基础,特别是对于复杂的癌症和当前难以完全解决的COVID-19问题。随着scRNA-seq技术的不断发展,单细胞数据库也在不断完善和扩大,涵盖越来越多的物种数据信息,同时提供多种分析功能,为单细胞研究提供了便利。本文回顾了目前广泛使用的单细胞数据库,并对其数据量和数据类型等做了概括总结。此外,我们还调查了研究人员在数据分析方面的使用情况,并得出了单细胞数据库建设的最新进展。最后,本文还针对目前单细胞数据库存在的局限性提出了一些改进建议。
In recent years, with the rise of large-scale biological experiments that focus on single-cell RNA se-quencing (scRNA-seq) technology, researchers can conduct more in-depth studies at the cellular level. Based on the advantages of scRNA-seq technology, particularly its ability to study cell hetero-geneity, an increasing number of single-cell databases have emerged, providing a research founda-tion for the occurrence and treatment of diseases, especially for complex cancers and the currently unsolved COVID-19 problem. As scRNA-seq technology continues to develop, single-cell databases are also constantly improving and expanding, covering more and more species data information, while providing multiple analysis functions, facilitating single-cell research. This article reviews currently widely used single-cell databases and summarizes their data volume and data types. In addition, we investigated the usage of researchers in data analysis and obtained the latest progress in the construction of single-cell databases. Finally, this article proposes some improvement sug-gestions for the limitations of current single-cell databases.

References

[1]  Hwang, B., Lee, J.H. and Bang, D. (2018) Single-Cell RNA Sequencing Technologies and Bioinformatics Pipelines. Experi-mental & Molecular Medicine, 50, 1-14.
https://doi.org/10.1038/s12276-018-0071-8
[2]  Buettner, F., et al. (2015) Computational Analysis of Cell-to-Cell Heterogeneity in Single-Cell RNA-Sequencing Data Reveals Hidden Subpopulations of Cells. Nature Biotechnology, 33, 155-160.
https://doi.org/10.1038/nbt.3102
[3]  Hu, H., et al. (2022) CITEMOXMBD: A Flexible Single-Cell Multimodal Omics Analysis Framework to Reveal the Heterogeneity of Immune Cells. RNA Biology, 19, 290-304.
https://doi.org/10.1080/15476286.2022.2027151
[4]  Shimizu, H. and Nakayama, K.I. (2020) Artificial Intelli-gence in Oncology. Cancer Science, 111, 1452-1460.
https://doi.org/10.1111/cas.14377
[5]  Kaufmann, S.H.E. (2019) Immunology’s Coming of Age. Frontiers in Immunolo-gy, 10, Article 684.
https://doi.org/10.3389/fimmu.2019.00684
[6]  Wu, W., et al. (2022) Exploring the Cellular Landscape of Circular RNAs Using Full-Length Single-Cell RNA Sequencing. Nature Communications, 13, Article No. 3242.
https://doi.org/10.1038/s41467-022-30963-8
[7]  Kim, D., et al. (2020) The Architecture of SARS-CoV-2 Transcriptome. Cell, 181, 914-921.
https://doi.org/10.1016/j.cell.2020.04.011
[8]  Mathys, H., et al. (2019) Single-Cell Transcriptomic Analysis of Alz-heimer’s Disease. Nature, 570, 332-337.
https://doi.org/10.1038/s41586-019-1195-2
[9]  Giustacchini, A., et al. (2017) Single-Cell Transcriptomics Uncovers Distinct Molecular Signatures of Stem Cells in Chronic Myeloid Leukemia. Nature Medicine, 23, 692-702.
https://doi.org/10.1038/nm.4336
[10]  Segerstolpe, A., et al. (2016) Single-Cell Transcriptome Profiling of Human Pancre-atic Islets in Health and Type 2 Diabetes. Cell Metabolism, 24, 593-607.
https://doi.org/10.1016/j.cmet.2016.08.020
[11]  Whiteside, T.L. (2008) The Tumor Microenvironment and Its Role in Promoting Tumor Growth. Oncogene, 27, 5904- 5912.
https://doi.org/10.1038/onc.2008.271
[12]  Janakiraman, M., et al. (2010) Genomic and Biological Characterization of Exon 4 KRAS Mutations in Human Cancer. Cancer Research, 70, 5901-5911.
https://doi.org/10.1158/0008-5472.CAN-10-0192
[13]  Barretina, J., et al. (2012) The Cancer Cell Line Ency-clopedia Enables Predictive Modelling of Anticancer Drug Sensitivity. Nature, 483, 603-607.
https://doi.org/10.1038/nature11003
[14]  Muus, C., et al. (2021) Single-Cell Meta-Analysis of SARS-CoV-2 Entry Genes across Tissues and Demographics. Nature Medicine, 27, 546-559.
https://doi.org/10.1038/s41591-020-01227-z
[15]  Zhang, J.-Y., et al. (2020) Single-Cell Landscape of Immunological Responses in Patients with COVID-19. Nature Immunology, 21, 1107-1118.
https://doi.org/10.1038/s41590-020-0762-x
[16]  Liao, M., et al. (2020) Single-Cell Landscape of Bronchoalveolar Im-mune Cells in Patients with COVID-19. Nature Medicine, 26, 842-844.
https://doi.org/10.1038/s41591-020-0901-9
[17]  Wilk, A.J., et al. (2020) A Single-Cell Atlas of the Peripheral Immune Response in Patients with Severe COVID-19. Nature Medicine, 26, 1070-1076.
https://doi.org/10.1038/s41591-020-0944-y
[18]  Hu, H., et al. (2023) Modeling and Analyzing Single-Cell Multimodal Data with Deep Parametric Inference. Briefings in Bioinformatics, 24, Article No. bbad005.
https://doi.org/10.1093/bib/bbad005
[19]  Qi, C., et al. (2022) SCovid: Single-Cell Atlases for Exposing Molecular Char-acteristics of COVID-19 across 10 Human Tissues. Nucleic Acids Research, 50, D867-D874.
https://doi.org/10.1093/nar/gkab881
[20]  Yuan, H., et al. (2019) CancerSEA: A Cancer Single-Cell State Atlas. Nucleic Acids Research, 47, D900-D908.
https://doi.org/10.1093/nar/gky939
[21]  Natarajan, K.N., et al. (2019) Comparative Analysis of Sequencing Technologies for Single-Cell Transcriptomics. Genome Biology, 20, Article No. 70.
https://doi.org/10.1186/s13059-019-1676-5
[22]  Hu, H., et al. (2023) Gene Function and Cell Surface Protein Association Analysis Based on Single-Cell Multiomics Data. Comput-ers in Biology and Medicine, 157, Article ID: 106733.
https://doi.org/10.1016/j.compbiomed.2023.106733
[23]  Zhang, X., et al. (2019) CellMarker: A Manually Curated Re-source of Cell Markers in Human and Mouse. Nucleic Acids Research, 47, D721-D728.
https://doi.org/10.1093/nar/gky900
[24]  Hu, C., et al. (2023) CellMarker 2.0: An Updated Database of Manually Curated Cell Markers in Human/Mouse and Web Tools Based on scRNA-Seq Data. Nucleic Acids Research, 51, D870-D876.
https://doi.org/10.1093/nar/gkac947
[25]  Papatheodorou, I., et al. (2020) Expression Atlas Update: From Tissues to Single Cells. Nucleic Acids Research, 48, D77-D83.
[26]  Zeng, J., et al. (2022) CancerSCEM: A Database of Single-Cell Expression Map across Various Human Cancers. Nucleic Acids Research, 50, D1147-D1155.
https://doi.org/10.1093/nar/gkab905
[27]  Wang, R., et al. (2023) Construction of a Cross-Species Cell Landscape at Sin-gle-Cell Level. Nucleic Acids Research, 51, 501-516.
https://doi.org/10.1093/nar/gkac633
[28]  Pan, L., et al. (2023) HTCA: A Database with an In-Depth Characterization of the Single-Cell Human Transcriptome. Nucleic Acids Research, 51, D1019-D1028.
https://doi.org/10.1093/nar/gkac791
[29]  Shi, X., et al. (2023) HUSCH: An Integrated Single-Cell Tran-scriptome Atlas for Human Tissue Gene Expression Visualization and Analyses. Nucleic Acids Research, 51, D1029-D1037.
https://doi.org/10.1093/nar/gkac1001
[30]  Gao, X., et al. (2023) ABC Portal: A Single-Cell Database and Web Server for Blood Cells. Nucleic Acids Research, 51, D792-D804.
https://doi.org/10.1093/nar/gkac646
[31]  Han, X., et al. (2018) Mapping the Mouse Cell Atlas by Microwell-Seq. Cell, 172, 1091-1107.
https://doi.org/10.1016/j.cell.2018.02.001
[32]  Schaum, N., et al. (2018) Single-Cell Transcriptomics of 20 Mouse Organs Creates a Tabula Muris. Nature, 562, 367-372.
https://doi.org/10.1038/s41586-018-0590-4
[33]  Tasic, B., et al. (2016) Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics. Nature Neuroscience, 19, 335-346.
https://doi.org/10.1038/nn.4216
[34]  Lake, B.B., et al. (2018) Integrative Single-Cell Analysis of Transcriptional and Epi-genetic States in the Human Adult Brain. Nature Biotechnology, 36, 70-80.
https://doi.org/10.1038/nbt.4038
[35]  The Tabula Muris Consortium (2020) A Single-Cell Transcriptomic Atlas Characterizes Ageing Tissues in the Mouse. Nature, 583, 590-595.
https://doi.org/10.1038/s41586-020-2496-1
[36]  Cao, Y., Zhu, J., Han, G., Jia, P. and Zhao, Z. (2017) ScRNASeqDB: A Database for Gene Expression Profiling in Human Single Cell by RNA-Seq. BioRxiv, Article ID: 104810.
https://doi.org/10.1101/104810
[37]  Franzén, O., Gan, L.-M. and Bj?rkegren, J.L.M. (2019) PanglaoDB: A Web Server for Exploration of Mouse and Human Single-Cell RNA Sequencing Data. Database, 2019, Article No. baz046.
https://doi.org/10.1093/database/baz046
[38]  Pardi, N., Hogan, M.J., Porter, F.W. and Weissman, D. (2018) MRNA Vaccines—A New Era in Vaccinology. Nature Reviews Drug Discovery, 17, 261-279.
https://doi.org/10.1038/nrd.2017.243
[39]  Liu, Y., Beyer, A. and Aebersold, R. (2016) On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell, 165, 535-550.
https://doi.org/10.1016/j.cell.2016.03.014
[40]  Wolf, F.A., Angerer, P. and Theis, F.J. (2018) SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis. Genome Biology, 19, Article No. 15.
https://doi.org/10.1186/s13059-017-1382-0
[41]  Becht, E., et al. (2019) Dimensionality Reduction for Visualizing Single-Cell Data Using UMAP. Nature Biotechnology, 37, 38-44.
https://doi.org/10.1038/nbt.4314
[42]  Kodinariya, T.M. and Makwana, P.R. (2013) Review on Determining Number of Cluster in K-Means Clustering. International Journal, 1, 90-95.
[43]  Murtagh, F. and Contreras, P. (2017) Algorithms for Hi-erarchical Clustering: An Overview, II. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7, e1219.
https://doi.org/10.1002/widm.1219
[44]  Bhattacharjee, P. and Mitra, P. (2021) A Survey of Density Based Clustering Al-gorithms. Frontiers of Computer Science, 15, Article No. 151308.
https://doi.org/10.1007/s11704-019-9059-3
[45]  Schaeffer, S.E. (2007) Graph Clustering. Computer Science Review, 1, 27-64.
https://doi.org/10.1016/j.cosrev.2007.05.001
[46]  Saelens, W., Cannoodt, R., Todorov, H. and Saeys, Y. (2019) A Com-parison of Single-Cell Trajectory Inference Methods. Nature Biotechnology, 37, 547-554.
https://doi.org/10.1038/s41587-019-0071-9
[47]  Peng, L., et al. (2022) Cell-Cell Communication Inference and Analysis in the Tumour Microenvironments from Single-Cell Transcriptomics: Data Resources and Computational Strategies. Briefings in Bioinformatics, 23, Article No. bbac234.
https://doi.org/10.1093/bib/bbac234
[48]  Ji, Q., et al. (2019) Single-Cell RNA-Seq Analysis Reveals the Progression of Human Osteoarthritis. Annals of the Rheumatic Diseases, 78, 100-110.
https://doi.org/10.1136/annrheumdis-2017-212863
[49]  Scialdone, A., et al. (2015) Computational Assignment of Cell-Cycle Stage from Single-Cell Transcriptome Data. Methods, 85, 54-61.
https://doi.org/10.1016/j.ymeth.2015.06.021
[50]  Zheng, G.X.Y., et al. (2017) Massively Parallel Digital Transcriptional Profiling of Single Cells. Nature Communications, 8, Article ID: 14049.
[51]  Subramanian, A., et al. (2005) Gene Set En-richment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proceedings of the Na-tional Academy of Sciences of the United States of America, 102, 15545-15550.
https://pubmed.ncbi.nlm.nih.gov/16199517/
[52]  Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018) Integrating Single-Cell Transcriptomic Data across Different Conditions, Technologies, and Species. Nature Biotechnology, 36, 411-420.
https://doi.org/10.1038/nbt.4096
[53]  Trapnell, C., et al. (2014) The Dynamics and Regulators of Cell Fate Decisions Are Revealed by Pseudotemporal Ordering of Single Cells. Nature Biotechnology, 32, 381-386.
https://doi.org/10.1038/nbt.2859
[54]  McCarthy, D.J., Campbell, K.R., Lun, A.T. and Wills, Q.F. (2017) Scater: Pre-Processing, Quality Control, Normalization and Visualization of Single-Cell RNA-Seq Data in R. Bioinformatics, 33, 1179-1186.
https://doi.org/10.1093/bioinformatics/btw777
[55]  Ji, Z. and Ji, H. (2016) TSCAN: Pseudo-Time Reconstruction and Evaluation in Single-Cell RNA-Seq Analysis. Nucleic Acids Research, 44, e117.
https://doi.org/10.1093/nar/gkw430
[56]  Li, H., et al. (2017) Reference Component Analysis of Single-Cell Transcrip-tomes Elucidates Cellular Heterogeneity in Human Colorectal Tumors. Nature Genetics, 49, 708-718.
https://doi.org/10.1038/ng.3818
[57]  Zhao, T., et al. (2021) SC2disease: A Manually Curated Database of Single-Cell Transcriptome for Human Diseases. Nucleic Acids Research, 49, D1413-D1419.
https://doi.org/10.1093/nar/gkaa838
[58]  Yu, G., Wang, L.-G., Han, Y. and He, Q.-Y. (2012) ClusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS: A Journal of Integrative Biology, 16, 284-287.
https://doi.org/10.1089/omi.2011.0118
[59]  Shannon, P., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498-2504.
https://doi.org/10.1101/gr.1239303
[60]  Szklarczyk, D., et al. (2019) STRING v11: Protein-Protein Association Net-works with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Re-search, 47, D607-D613.
https://doi.org/10.1093/nar/gky1131
[61]  Love, M.I., Huber, W. and Anders, S. (2014) Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biology, 15, Article No. 550.
https://doi.org/10.1186/s13059-014-0550-8
[62]  Wilkerson, M.D. and Hayes, D.N. (2010) ConsensusClusterPlus: A Class Discovery Tool with Confidence Assessments and Item Tracking. Bioinformatics, 26, 1572-1573.
https://doi.org/10.1093/bioinformatics/btq170
[63]  Storey, J.D. and Tibshirani, R. (2003) Statistical Significance for Ge-nomewide Studies. Proceedings of the National Academy of Sciences of the United States of America, 100, 9440-9445.
https://doi.org/10.1073/pnas.1530509100
[64]  Jassal, B., et al. (2020) The Reactome Pathway Knowledgebase. Nucleic Acids Research, 48, D498-D503.
[65]  Xia, J., Benner, M.J. and Hancock, R.E. (2014) NetworkAnalyst—Integrative Ap-proaches for Protein-Protein Interaction Network Analysis and Visual Exploration. Nucleic Acids Research, 42, W167-W174.
https://doi.org/10.1093/nar/gku443
[66]  Carpenter, A.E., et al. (2006) CellProfiler: Image Analysis Software for Identify-ing and Quantifying Cell Phenotypes. Genome Biology, 7, Article No. R100.
https://doi.org/10.1186/gb-2006-7-10-r100
[67]  Kuleshov, M.V., et al. (2016) Enrichr: A Comprehensive Gene Set En-richment Analysis Web Server 2016 Update. Nucleic Acids Research, 44, W90-W97.
https://doi.org/10.1093/nar/gkw377
[68]  Chatr-Aryamontri, A., et al. (2017) The BioGRID Interaction Database: 2017 Update. Nucleic Acids Research, 45, D369-D379.
https://doi.org/10.1093/nar/gkw1102
[69]  Korsunsky, I., et al. (2019) Fast, Sensitive and Accurate Integration of Single-Cell Data with Harmony. Nature Methods, 16, 1289-1296.
https://doi.org/10.1038/s41592-019-0619-0
[70]  DePasquale, E.A.K., et al. (2019) DoubletDecon: Deconvoluting Dou-blets from Single-Cell RNA-Sequencing Data. Cell Reports, 29, 1718-1727.
https://doi.org/10.1016/j.celrep.2019.09.082
[71]  Aran, D., et al. (2019) Reference-Based Analysis of Lung Single-Cell Sequencing Reveals a Transitional Profibrotic Macrophage. Nature Immunology, 20, 163-172.
https://doi.org/10.1038/s41590-018-0276-y
[72]  Li, Y., Shi, W. and Wasserman, W.W. (2018) Genome-Wide Prediction of Cis-Regulatory Regions Using Supervised Deep Learning Methods. BMC Bioinformatics, 19, Article No. 202.
https://doi.org/10.1186/s12859-018-2187-1
[73]  Gu, Z., Eils, R. and Schlesner, M. (2016) Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data. Bioinformatics, 32, 2847-2849.
https://doi.org/10.1093/bioinformatics/btw313
[74]  Rousseeuw, P.J. (1987) Silhouettes: A Graphical Aid to the Interpreta-tion and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics, 20, 53-65.
https://doi.org/10.1016/0377-0427(87)90125-7
[75]  Jin, S., et al. (2021) Inference and Analysis of Cell-Cell Communica-tion Using CellChat. Nature Communications, 12, Article No. 1088.
https://doi.org/10.1038/s41467-021-21246-9
[76]  Kiselev, V.Y., Yiu, A. and Hemberg, M. (2018) Scmap: Projection of Single-Cell RNA-Seq Data across Data Sets. Nature Methods, 15, 359-362.
https://doi.org/10.1038/nmeth.4644
[77]  Efremova, M., Vento-Tormo, M., Teichmann, S.A. and Vento-Tormo, R. (2020) CellPhoneDB: Inferring Cell-Cell Communication from Combined Expression of Multi-Subunit Ligand-Receptor Complexes. Nature Protocols, 15, 1484-1506.
https://doi.org/10.1038/s41596-020-0292-x
[78]  Baron, M., et al. (2016) A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Systems, 3, 346-360.
https://doi.org/10.1016/j.cels.2016.08.011
[79]  Moerman, T., et al. (2019) GRNBoost2 and Arboreto: Efficient and Scalable Inference of Gene Regulatory Networks. Bioinformatics, 35, 2159-2161.
https://doi.org/10.1093/bioinformatics/bty916
[80]  Ghahremani, P., et al. (2021) NeuroConstruct: 3D Reconstruction and Visualization of Neurites in Optical Microscopy Brain Images. IEEE Transactions on Visualization and Computer Graphics, 28, 4951-4965.
https://doi.org/10.1109/TVCG.2021.3109460
[81]  Chong, J., Yamamoto, M. and Xia, J. (2019) MetaboAnalystR 2.0: From Raw Spectra to Biological Insights. Metabolites, 9, Article No. 57.
https://doi.org/10.3390/metabo9030057
[82]  Finak, G., et al. (2015) MAST: A Flexible Statistical Framework for As-sessing Transcriptional Changes and Characterizing Heterogeneity in Single-Cell RNA Sequencing Data. Genome Biology, 16, Article No. 278.
https://doi.org/10.1186/s13059-015-0844-5
[83]  Ashburner, M., et al. (2000) Gene Ontology: Tool for the Unification of Biology. Nature Genetics, 25, 25-29.
https://doi.org/10.1038/75556
[84]  Kiselev, V.Y., et al. (2017) SC3: Consensus Clustering of Single-Cell RNA-Seq Data. Nature Methods, 14, 483-486.
https://doi.org/10.1038/nmeth.4236

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413