全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Packed Bed Thermocline Thermal Energy Storage for Medium-Temperature Concentrating Solar Systems: Numerical and Experimental Study

DOI: 10.4236/jpee.2023.115001, PP. 1-23

Keywords: Thermal Energy Storage, Packed Bed, Numerical, Model, Experimental

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thermal Energy Storage is becoming a necessary component of sustainable energy production systems as it helps alleviate intrinsic limitations of Renewable Energy Sources, such as intermittent use and mismatch between power demand and supply. This paper discusses a packed bed thermocline tank as a thermal energy storage solution. Firstly, this paper presents the development of a numerical model calculating heat transfers within the tank, based on a discretization over several nodes and the nodal formulation of the heat balance equation. The model considers a filler material and a heat transferring fluid and uses the finite difference method to calculate the temperature evolution of the two media across the tank. The model was validated with two different packed bed systems from the literature during a discharging process, presenting a good fit with the experimental results. Secondly, the experimental packed bed is presented and characterized for a charging cycle from ambient temperature to approximately 180?C. The charging experiment was accurately reproduced with the numerical model requiring minimal computational time. Two additional charging modes were simulated with different inlet HTF conditions: constant temperature and varying temperature following the profile produced by a thermal solar collector field. The temperature profiles obtained from the three charging modes were analysed and compared to each other. The proposed numerical and experimental tools will be used in future studies for a better understanding of the design and operating conditions of packed bed thermal energy storage systems.

References

[1]  Cabeza, L.F., Martorell, I., Miró, L., Fernández, A.I. and Barreneche, C. (2015) Introduction to Thermal Energy Storage (TES) Systems. In: Cabeza, L.F., Ed., Advances in Thermal Energy Storage Systems, Elsevier, Amsterdam, 1-28.
s://doi.org/10.1533/9781782420965.1
[2]  Cabeza, L.F. (2021) Advances in Thermal Energy Storage Systems. Elsevier, Amsterdam.
s://doi.org/10.1016/B978-0-12-819885-8.00002-4
[3]  White, A.J., McTigue, J.D. and Markides, C.N. (2016) Analysis and Optimisation of Packed-Bed Thermal Reservoirs for Electricity Storage Applications. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 230, 739-754.
s://doi.org/10.1177/0957650916668447
[4]  Ge, Y.Q., Zhao, Y. and Zhao, C.Y. (2021) Transient Simulation and Thermodynamic Analysis of Pumped Thermal Electricity Storage Based on Packed-Bed Latent Heat/Cold Stores. Renew Energy, 174, 939-951.
s://doi.org/10.1016/j.renene.2021.04.094
[5]  Garg, H.P., Mullick, S.C. and Bhargava, A.K. (1985) Sensible Heat Storage. In: Garg, H.P., Mullick, S.C. and Bhargava, A.K., Eds., Solar Thermal Energy Storage, Springer, Dordrecht, 82-153.
s://doi.org/10.1007/978-94-009-5301-7_2
[6]  Stathopoulos, N. (2015) Numerical and Experimental Optimization of Peak Power Reduction Control Strategies. ENTPE, Lyon.
[7]  Tamme, R., Bauer, T., Buschle, J., Laing, D., Müller-Steinhagen, H. and Steinmann, W.-D. (2008) Latent Heat Storage above 120˚C for Applications in the Industrial Process Heat Sector and Solar Power Generation. International Journal of Energy Research, 32, 264-271.
s://doi.org/10.1002/er.1346
[8]  Kunwer, R., Pandey, S. and Pandey, G. (2022) Technical Challenges and Their Solutions for Integration of Sensible Thermal Energy Storage with Concentrated Solar Power Applications—A Review. Process Integration and Optimization for Sustainability, 6, 559-585.
s://doi.org/10.1007/s41660-022-00231-9
[9]  Zhao, B., Cheng, M., Liu, C. and Dai, Z. (2017) An Efficient Tank Size Estimation Strategy for Packed-Bed Thermocline Thermal Energy Storage Systems for Concentrated Solar Power. Solar Energy, 153, 104-114.
s://doi.org/10.1016/j.solener.2017.05.057
[10]  Mawire, A., Lentswe, K.A. and Shobo, A. (2019) Performance Comparison of Four Spherically Encapsulated Phase Change Materials for Medium Temperature Domestic Applications. Journal of Energy Storage, 23, 469-479.
s://doi.org/10.1016/j.est.2019.04.007
[11]  Khor, J.O., Sze, J.Y., Li, Y. and Romagnoli, A. (2020) Overcharging of a Cascaded Packed Bed Thermal Energy Storage: Effects and Solutions. Renewable and Sustainable Energy Reviews, 117, Article ID: 109421.
s://doi.org/10.1016/j.rser.2019.109421
[12]  Yang, X. and Cai, Z. (2019) An Analysis of a Packed Bed Thermal Energy Storage System Using Sensible Heat and Phase Change Materials. International Journal of Heat and Mass Transfer, 144, Article ID: 118651.
s://doi.org/10.1016/j.ijheatmasstransfer.2019.118651
[13]  Ismail, K.A.R. and Stuginsky Jr., R. (1999) A Parametric Study on Possible Fixed Bed Models for Pcm and Sensible Heat Storage. Applied Thermal Engineering, 19, 757-788.
s://doi.org/10.1016/S1359-4311(98)00081-7
[14]  Zaghari, R. and Baharloo-Houreh, N. (2022) A Comprehensive Review of Sensible Heat Based Packed Bed Solar Thermal Energy Storage System. Journal of Renewable and New Energy, 9, 130-140.
[15]  Fu, T., Zhu, G. and Tong, L. (2022) Numerical Investigation on Optimizing the Performance of Heat Transfer in Vertical Packed Bed at the Particle Scale. Journal of Power and Energy Engineering, 10, 26-33.
s://doi.org/10.4236/jpee.2022.1012003
[16]  Mawire, A. and McPherson, M. (2009) Experimental and Simulated Temperature Distribution of an Oil-Pebble Bed Thermal Energy Storage System with a Variable Heat Source. Applied Thermal Engineering, 29, 1086-1095.
s://doi.org/10.1016/j.applthermaleng.2008.05.028
[17]  Stathopoulos, N., El Mankibi, M., Issoglio, R., Michel, P. and Haghighat, F. (2016) Air-PCM Heat Exchanger for Peak Load Management: Experimental and Simulation. Solar Energy, 132, 453-466.
s://doi.org/10.1016/j.solener.2016.03.030
[18]  Stathopoulos, N., El Mankibi, M. and Santamouris, M. (2017) Numerical Calibration and Experimental Validation of a PCM-Air Heat Exchanger Model. Applied Thermal Engineering, 114, 1064-1072.
s://doi.org/10.1016/j.applthermaleng.2016.12.045
[19]  Roccamena, L., El Mankibi, M. and Stathopoulos, N. (2019) Development and Validation of the Numerical Model of an Innovative PCM Based Thermal Storage System. Journal of Energy Storage, 24, Article ID: 100740.
s://doi.org/10.1016/j.est.2019.04.014
[20]  Yagi, S. and Wakao, N. (1959) Heat and Mass Transfer from Wall to Fluid in Packed Beds. AIChE Journal, 5, 79-85.
s://doi.org/10.1002/aic.690050118
[21]  Esence, T., Bruch, A., Molina, S., Stutz, B. and Fourmigué, J.F. (2017) A Review on Experience Feedback and Numerical Modeling of Packed-Bed Thermal Energy Storage Systems. Solar Energy, 153, 628-654.
s://doi.org/10.1016/j.solener.2017.03.032
[22]  Ranz, W. and Marshall, W. (1952) Evaporation from Drops. Chemical Engineering Progress, 48, 141-146.
[23]  Li, P., Van Lew, J., Karaki, W., Chan, C., Stephens, J. and Wang, Q. (2011) Generalized Charts of Energy Storage Effectiveness for Thermocline Heat Storage Tank Design and Calibration. Solar Energy, 85, 2130-2143.
s://doi.org/10.1016/j.solener.2011.05.022
[24]  Pacheco, J.E., Showalter, S.K. and Kolb, W.J. (2002) Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants. Journal of Solar Energy Engineering, Transactions of the ASME, 124, 153-159.
s://doi.org/10.1115/1.1464123
[25]  Hoffmann, J.F., Fasquelle, T., Goetz, V. and Py, X. (2016) A Thermocline Thermal Energy Storage System with Filler Materials for Concentrated Solar Power Plants: Experimental Data and Numerical Model Sensitivity to Different Experimental Tank Scales. Applied Thermal Engineering, 100, 753-761.
s://doi.org/10.1016/j.applthermaleng.2016.01.110
[26]  Van Lew, J.T., Li, P., Chan, C.L., Karaki, W. and Stephens, J. (2011) Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material. Journal of Solar Energy Engineering, 133, Article ID: 021003.
s://doi.org/10.1115/1.4003685
[27]  Xu, C., Wang, Z., He, Y., Li, X. and Bai, F. (2012) Sensitivity Analysis of the Numerical Study on the Thermal Performance of a Packed-Bed Molten Salt Thermocline Thermal Storage System. Applied Energy, 92, 65-75.
s://doi.org/10.1016/j.apenergy.2011.11.002
[28]  Hernandez, A.B., Uriz, I., Ortega-Fernández, I., Rodriguez-Aseguinolaza, J., Ortuondo, A. and Faik, A. (2018) Solid Packed Bed Thermal Energy Storage for ORC Electric Generation in Fresnel Type CSP Plants. AIP Conference Proceedings, 2033, Article ID: 090013.
s://doi.org/10.1063/1.5067107
[29]  Technical Data Sheet Therminol®SP Heat Transfer Fluid.
s://productcatalog.eastman.com/tds/ProdDatasheet.aspx?product=71093454
[30]  Jacobs, R. and Bruno, F. (2021) Thermophysical Properties of Quartzite for High Temperature Thermal Storage.
[31]  Grosu, Y., Faik, A., Ortega-Fernández, I. and D’Aguanno, B. (2017) Natural Magnetite for Thermal Energy Storage: Excellent Thermophysical Properties, Reversible Latent Heat Transition and Controlled Thermal Conductivity. Solar Energy Materials and Solar Cells, 161, 170-176.
s://doi.org/10.1016/j.solmat.2016.12.006
[32]  Filali Baba, Y., Ajdad, H., Mers, A.A.L., Grosu, Y. and Faik, A. (2019) Multilevel Comparison between Magnetite and Quartzite as Thermocline Energy Storage Materials. Applied Thermal Engineering, 149, 1142-1153.
s://doi.org/10.1016/j.applthermaleng.2018.12.002
[33]  Qiu, H., Wu, Y., Chen, H., Wang, R., Yu, J. and Lin, Y. (2023) Influence of SiC on the Thermal Energy Transfer and Storage Characteristics of Microwave-Absorbing Concrete Containing Magnetite and/or Carbonyl Iron Powder. Construction and Building Materials, 366, Article ID: 130191.
s://doi.org/10.1016/j.conbuildmat.2022.130191
[34]  Pirtsul, A.E., Rubtsova, M.I., Mendgaziev, R.I., Cherednichenko, K.A., et al. (2022) Phase-Change Composites for Bimodal Solar/Electromagnetic Energy Storage Based on Magnetite-Modified Cellulose Microfibers. Materials Letters, 327, Article ID: 132997.
s://doi.org/10.1016/j.matlet.2022.132997
[35]  Filali Baba, Y., Al Mers, A., Faik, A. and Ajdad, H. (2019) Experimental Characterization of Magnetite under Thermal Cycling for Thermocline Energy Storage. 13th International Renewable Energy Storage Conference, Dusseldorf, 12-15 March 2019, 81-85.
s://doi.org/10.2991/ires-19.2019.10
[36]  Ortega-Fernández, I., Hernández, A.B., Wang, Y. and Bielsa, D. (2021) Performance Assessment of an Oil-Based Packed Bed Thermal Energy Storage Unit in a Demonstration Concentrated Solar Power Plant. Energy, 217, Article ID: 119378.
s://doi.org/10.1016/j.energy.2020.119378
[37]  Papanicolaou, E. and Belessiotis, V. (2009) Transient Development of Flow and Temperature Fields in an Underground Thermal Storage Tank under Various Charging Modes. Solar Energy, 83, 1161-1176.
s://doi.org/10.1016/j.solener.2009.01.017
[38]  Mawire, A., McPherson, M., van den Heetkamp, R.R.J. and Mlatho, S.J.P. (2009) Simulated Performance of Storage Materials for Pebble Bed Thermal Energy Storage (TES) Systems. Applied Energy, 86, 1246-1252.
s://doi.org/10.1016/j.apenergy.2008.09.009
[39]  Lou, W., Luo, L., Hua, Y., Fan, Y. and Du, Z. (2021) A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems. Energies (Basel), 14, Article No. 8384.
s://doi.org/10.3390/en14248384
[40]  Lugolole, R., Mawire, A., Lentswe, K.A., Okello, D. and Nyeinga, K. (2018) Thermal Performance Comparison of Three Sensible Heat Thermal Energy Storage Systems during Charging Cycles. Sustainable Energy Technologies and Assessments, 30, 37-51.
s://doi.org/10.1016/j.seta.2018.09.002

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133