全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Megamitochondria Initiate Differentiation of Monolayer Cells into Detached Dome Cells That Proliferate by a Schizogony-Like Amitotic Process

DOI: 10.4236/abb.2023.145016, PP. 245-278

Keywords: Mitochondria, Megamitochondria, Mitonucleons, Polyteny, Schizogony, Polyploid Reduction Divisions, Cellularization, Pyknotic Nuclear Aggregates, Molded Nuclei, Karryorhexis and Karyolysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mitonucleon-initiated dome formation involves structural changes occurring over a 20 to 24 hour period in monolayer cells induced by a serum factor. The earliest observable change is the fusion of monolayer cells into a syncytium in which nuclei aggregate and become surrounded by a membrane that stains for endogenous biotin. Each of these structures is further surrounded by a fraction of the mitochondria that arise in the syncytium following initiation of dome formation. The mitochondria fuse around the chromatin aggregate in a structure we have called a mitonucleon. Within mitonucleons, a gaseous vacuole is generated that can be seen in protrusions of the apical membrane pressuring chromatin into a pyknotic state. Eventually that pressure, together with whatever enzymatic changes have occurred in the bolus of chromatin, results in DNA fragmentation. The fragments drawn out through the syncytium by a unipolar spindle are arrayed in a configuration that appears open both to epigenetic changes and to DNA repair and replication by polyteny. The fragmented DNA stretched across the syncytial space, hardly detectable by light microscopy, becomes visible approximately half way through the differentiation as the filaments thicken in what looks like replication by polyteny. This “recycling” of attached monolayer cells into detached dome cells must include DNA replication since the number of cells in the resulting domes is greater than the number of monolayer cells by 30% or more. The resulting DNA associates into a mass of chromatin which will “segment” into polyploid structures and then into what appear to be diploid nuclei over a period of 2 to 4 hours. When the layer of nuclei has filled the syncytium, the nuclei are cellularized, forming dome cells rising up from the monolayer and arching over a fluid cavity. Dome cells can extend into gland-like structures by the same mitonucleon dependent amitotic process observed in dome formation. Some of the characteristics of this process resemble the amitotic process of schizogony among single-celled eukaryotic parasites of the apicomplexan phylum. Mitonucleon initiated amitotic proliferation results in synthesis of dozens of dome cell nuclei in a period of 20 to 24 hours, so it is much more efficient than mitosis. Cells generated by this process and their progeny would also not be sensitive to agents that inhibit mitosis suggesting that the process, as an alternative to mitosis, might be activated in cancers that become resistant to some cytotoxic drugs.

References

[1]  Fleming, H. (1995) Differentiation in Human Endometrial Cells in Monolayer Culture: Dependence on a Factor in Fetal Bovine Serum. Journal of Cellular Biochemistry, 57, 262-270.
https://doi.org/10.1002/jcb.240570210
[2]  Nishida, M., Kasahara, K., Kaneko, M. and Iwasaki, H. (1985) Establishment of a New Human Endometrial Adenocarcinoma Cell Line, Ishikawa Cells, Containing Estrogen and Progesterone Receptors. Acta Obstetrica et Gynaecologica Japonica, 37, 1103-1111. (In Japanese)
[3]  Fleming, H., Condon, R., Peterson, G., Guck, I., Prescott, E., Chatfield, K. and Duff, M. (1998) Role of Biotin-Containing Membranes and Nuclear Distribution in Differentiating Human Endometrial Cells. Journal of Cellular Biochemistry, 71, 400-415.
https://doi.org/10.1002/(SICI)1097-4644(19981201)71:3<400::AID-JCB9>3.0.CO;2-W
[4]  Fleming, H. (2016) Mitonucleons Formed during Differentiation of Ishikawa Endometrial Cells Generate Vacuoles that Elevate Monolayer Syncytia: Differentiation of Ishikawa Domes, Part 1. PeerJ, 4, e1728v1.
https://doi.org/10.7287/peerj.preprints.1728v1
[5]  Fleming, H. (2016) Pyknotic Chromatin in Mitonucleons Elevating in Syncytia Undergo Karyorhhexis and Karyolysis before Coalescing into an Irregular Chromatin Mass: Differentiation of Ishikawa Domes, Part 2. PeerJ, 4, e1729v1. (Preprints)
https://doi.org/10.7287/peerj.preprints.1729v1
[6]  Fleming, H. (2016) Chomatin Mass from Previously Aggregated, Pyknotic, and Fragmented Monolayer Nuclei Is a Source for Dome Cell Nuclei Generated by Amitosis: Differentiation of Ishikawa Domes, Part 3. PeerJ, 4, e1730v1.
https://doi.org/10.7287/peerj.preprints.1730v1
[7]  Fleming, H. (2018) Polyploid Monolayer Ishikawa Endometrial Cells form Unicellular Hollow Spheroids Capable of Migration. PeerJ, 6, e26793v1. (Preprints)
https://doi.org/10.7287/peerj.preprints.26793v1
[8]  Wakabayashi T. (2002) Megamitochondria Formation—Physiology and Pathology. Journal of Cellular and Molecular Medicine, 6, 497-538.
https://doi.org/10.1111/j.1582-4934.2002.tb00452.x
[9]  Sun, M.G., Williams, J., Munoz-Pinedo, C., Perkins, G.A., Brown, J.M., Ellisman, M.H., Green, D.R. and Frey, T.G. (2007) Correlated Three-Dimensional Light and Electron Microscopy Reveals Transformation of Mitochondria during Apoptosis. Nature Cell Biology, 9, 1057-1065.
https://doi.org/10.1038/ncb1630
[10]  Gamachi, A., Kashima, K., Daa, T., Nakatani, Y., Tsujimoto, M. and Yokoyama, S. (2003) Aberrant Intranuclear Localization of Biotin, Biotin-Binding Enzymes and Beta-Catenin in Pregnancy-Related Endometrium and Morule-Associated Neoplastic Lesions. Modern Pathology, 16, 1124-1131.
https://doi.org/10.1097/01.MP.0000092953.20717.48
[11]  Bartolomé, F. and Abramov, A.Y. (2015) Measurement of Mitochondrial NADH and FAD Autofluorescence in Live Cells. In: Weissig, V. and Edeas, M., Eds., Mitochondrial Medicine, Methods in Molecular Biology, Vol. 1264, Humana, New York, 263-270.
https://doi.org/10.1007/978-1-4939-2257-4_23
[12]  Fleming, H. (2018) Mitochondrial/Nuclear Superstructures Drive Morphological Changes in Endometrial Epithelia by Pressure Exerted when Gas Vacuoles Form and Coalesce within Superstructures. Advances in Bioscience and Biotechnology, 9, 224-242.
https://doi.org/10.4236/abb.2018.95016
[13]  Connolly, P.F., Jäger, R. and Fearnhead, H.O. (2014) New Roles for Old Enzymes: Killer Caspases as the Engine of Cell Behavior Changes. Frontiers in Physiology, 5, Article 149.
https://doi.org/10.3389/fphys.2014.00149
[14]  Farzaneh, F., Meldrum, R. and Shall, S. (1987) Transient Formation of DNA Strand Breaks during the Induced Differentiation of a Human Promyelocyticleukaemic Cell Line, HL-60. Nucleic Acids Research, 15, 3493-3502.
https://doi.org/10.1093/nar/15.8.3493
[15]  Mazur, M.T., Hendrickson, M.R. and Kempson, R.L. (1983) Optically Clear Nuclei: An Alteration of Endometrial Epithelium in the Presence of Trophoblast. The American Journal of Surgical Pathology, 7, 415-423.
https://doi.org/10.1097/00000478-198307000-00004
[16]  Yamashita, T., Hosoda, Y., Kameyama, K., Aiba, M., Ito, K. and Fujimoto, Y. (1992) Peculiar Nuclear Clearing Composed of Microfilaments in Papillary Carcinoma of the thyroid. Cancer, 70, 2923-2928.
https://doi.org/10.1002/1097-0142(19921215)70:12<2923::AID-CNCR2820701232>3.0.CO;2-G
[17]  Yang, P., Morizumi, H., Sano, T., Hirose, T., Hasegawa, T., Seki, K. and Hizawa, K. (1995) Pulmonary Blastoma: An Ultrastructural and Immunohistochemical Study with Special Reference to Nuclear Filament Aggregation. Ultrastructural Pathology, 19, 501-509.
https://doi.org/10.3109/01913129509014626
[18]  Zybina. E. (1970) Anomalies of Polyploidization of the Cells of the Trophoblast. Tsitologiya, 12, 1081-1093.
[19]  Zybina, E.V. and Zybina, T.G. (1996) Polytene Chromosomes in Mammalian Cells. International Review of Cytology, 165, 53-119.
https://doi.org/10.1016/S0074-7696(08)62220-2
[20]  Isakova, G.K. and Mead, R.A. (2004) Occurrence of Amitotic Division of Trophoblast cell Nuclei in Blastocysts of the Western Spotted Skunk (Spilogale putoriuslati frons). Hereditas, 140, 177-184.
https://doi.org/10.1111/j.1601-5223.2004.01749.x
[21]  Grell, M. (1946) Cytological Studies in Culex I. Somatic Reduction Divisions. Genetics, 31, 60-76.
https://doi.org/10.1093/genetics/31.1.60
[22]  Berger, C.A. (1938) Chromosome Changes during Development in the Mosquito. Carnegie Institution Washington Publication, No. 96, 221-224.
[23]  Sturgis, C.D., Nassar, D.L., D’Antonio, J.A. and Raab, S.S. (2000) Cytologic Features useful for Distinguishing Small Cell from Non-Small Cell Carcinoma in Bronchial Brush and Wash Specimens. American Journal of Clinical Pathology, 114, 197-202.
https://doi.org/10.1309/8MQG-6XEK-3X9L-A9XU
[24]  Shield, P.W. and Crous, H. (2014) Fine-Needle Aspiration Cytology of Merkel Cell Carcinoma—A Review of 69 Cases. Diagnostic Cytopathology, 42, 924-928.
https://doi.org/10.1002/dc.23151
[25]  Pearson, M.J. (1974) Polyteny and the Functional Significance of the Polytene Cell Cycle. Journal of Cell Science, 15, 457-479.
https://doi.org/10.1242/jcs.15.2.457
[26]  Shidham, V.B. (2022) Metastatic Carcinoma in Effusions. CytoJournal, 19, 4.
https://doi.org/10.25259/CMAS_02_09_2021
[27]  Striepen, B., Jordan, C.N., Reiff, S. and van Dooren, G.G. (2007) Building the Perfect Parasite: Cell Division in Apicomplexa. PLOS Pathogens, 3, e78.
https://doi.org/10.1371/journal.ppat.0030078
[28]  Francia, M.E. and Striepen, B. (2014) Cell Division in Apicomplexan Parasites. Nature Reviews Microbiology, 12, 125-136
https://doi.org/10.1038/nrmicro3184
[29]  Gubbels, M.J., Coppens, I., Zarringhalam, K., Duraisingh, M.T. and Engelberg, K. (2021) The Modular Circuitry of Apicomplexan Cell Division Plasticity. Frontiers in Cellular and Infection Microbiology, 11, Article 670049.
https://doi.org/10.3389/fcimb.2021.670049
[30]  Dubey, J.P. (1998) Advances in the Life Cycle of Toxoplasma gondii. International Journal for Parasitology, 28, 1019-1024.
https://doi.org/10.1016/S0020-7519(98)00023-X
[31]  Vaishnava, S., Morrison, D.P., Gaji, R.Y., Murray, J.M., Entzeroth, R., Howe, D.K. and Striepen, B. (2005) Plastid Segregation and Cell Division in the Apicomplexan Parasite Sarcocystis neurona. Journal of Cell Science, 118, 3397-3407.
https://doi.org/10.1242/jcs.02458
[32]  McDonald, J. and Merrick, C.J. (2022) DNA Replication Dynamics during Erythrocyticschizogony in the Malaria Parasites Plasmodium falciparum and Plasmodium knowlesi. PLOS Pathogens, 18, e1010595.
https://doi.org/10.1371/journal.ppat.1010595
[33]  Klaus, S., Binder, P., Kim, J., Machado, M., Funaya, C., Schaaf, V., Klaschka, D., Kudulyte, A., Cyrklaff, M., Laketa, V., Höfer, T., Guizetti, J., Becker, N.B., Frischknecht, F., Schwarz, U.S. and Ganter, M. (2022) Asynchronous Nuclear Cycles in Multinucleated Plasmodium falciparum Facilitate rapid Proliferation. Science Advances, 8, eabj5362.
https://doi.org/10.1126/sciadv.abj5362
[34]  Ganter, M., Goldberg, J.M., Dvorin, J.D., Paulo, J.A., King, J.G., Tripathi, A.K., Paul, A.S., Yang, J., Coppens, I., Jiang, R.H., Elsworth, B., Baker, D.A., Dinglasan, R.R., Gygi, S.P. and Duraisingh, M.T. (2017) Plasmodium Falciparum CRK4 Directs Continuous Rounds of DNA Replication during Schizogony. Nature Microbiology, 2, Article No. 17017.
https://doi.org/10.1038/nmicrobiol.2017.17
[35]  Striepen, B., Crawford, M.J., Shaw, M.K., Tilney, L.G., Seeber, F. and Roos, D.S. (2000) The Plastid of Toxoplasma gondii Is Divided by Association with the Centrosomes. The Journal of Cell Biology, 151, 1423-1434.
https://doi.org/10.1083/jcb.151.7.1423
[36]  Arnot, D.E., Ronander, E. and Bengtsson, D.C. (2011) The Progression of the Intra-Erythrocytic Cell Cycle of Plasmodium falciparum and the Role of the Centriolar Plaques in Asynchronous Mitotic Division during Schizogony. International Journal for Parasitology, 41, 71-80.
https://doi.org/10.1016/j.ijpara.2010.07.012
[37]  Reilly, H.B., Wang, H., Steuter, J.A., Marx, A.M. and Ferdig, M.T. (2007) Quantitative Dissection of Clone-Specific Growth Rates in Cultured Malaria Parasites. International Journal for Parasitology, 37, 1599-1607.
https://doi.org/10.1016/j.ijpara.2007.05.003
[38]  Rudlaff, R.M., Kraemer, S., Marshman, J. and Dvorin, J.K. (2020) Three-Dimensional Ultrastructure of Plasmodium falciparum throughout Cytokinesis. PLOS Pathogens, 16, e1008587.
https://doi.org/10.1371/journal.ppat.1008587
[39]  Cremer, T. and Cremer, M. (2010) Chromosome Territories. Cold Spring Harbor Perspectives in Biology, 2, a003889.
https://doi.org/10.1101/cshperspect.a003889
[40]  Bickmore, W.A. and van Steensel. B. (2013) Genome Architecture: Domain Organization of Interphase Chromosomes. Cell, 152, 1270-1284.
https://doi.org/10.1016/j.cell.2013.02.001
[41]  Dundr, M. and Misteli, T. (2010) Biogenesis of Nuclear Bodies. Cold Spring Harbor Perspectives in Biology, 2, a000711.
https://doi.org/10.1101/cshperspect.a000711
[42]  Fleming, H. (2019) Chromatin Streaming from Giant Polyploid Nuclei in Ishikawa Endometrial Hollow Spheroids Results in the Amitotic Proliferation of Nuclei that Fill the Spheroid Envelope. PeerJ, 7, e27463v1.
https://doi.org/10.7287/peerj.preprints.27463v1
[43]  Zuleger, N., Robson, M.I. and Schirmer, E.C. (2011) The Nuclear Envelope as a Chromatin Organizer. Nucleus, 2, 339-349.
https://doi.org/10.4161/nucl.2.5.17846
[44]  O’Sullivan, J.M., Pai, D.A., Cridge, A.G., Engelke, D.R. and Ganley, A.R.D. (2013) The Nucleolus: A Raft Adrift in the Nuclear Sea or the Keystone in Nuclear Structure? Biomolecular Concepts, 4, 277-286.
https://doi.org/10.1515/bmc-2012-0043
[45]  Ulferts, S., Prajapati, B., Grosse, R. and Vartiainen, M.K. (2021) Emerging Properties and Functions of Actin and Actin Filaments Inside the Nucleus. Cold Spring Harbor Perspectives in Biology, 13, a040121.
https://doi.org/10.1101/cshperspect.a040121
[46]  Gunasekaran, S., Miyagawa, Y. and Miyamoto, K. (2022) Actin Nucleoskeleton in Embryonic Development and Cellular Differentiation. Current Opinion in Cell Biology, 76, Article ID: 102100.
https://doi.org/10.1016/j.ceb.2022.102100
[47]  Davies, H.G. and Haynes, M.E. (1975) Light- and Electron-Microscope Observations on Certain Leukocytes in a Teleost Fish and a Comparison of the Envelope-Limited Monolayers of Chromatin Structural Units in Different Species. Journal of Cell Science, 17, 263-285.
https://doi.org/10.1242/jcs.17.3.263
[48]  Olins, D.E. and Olins, A.L. (2009) Nuclear Envelope-Limited Chromatin Sheets (ELCS) and Heterochromatin Higher Order Structure. Chromosoma, 118, 537-548.
https://doi.org/10.1007/s00412-009-0219-3
[49]  Ghadially, F.N. (1988) Nuclear Projections, Pockets, Loopse, Satellites and Clefts. In: Ghadially, F.N., Ed., Ultrastructural Pathology of Cell and Matrix, 3rd Edtion, Vol. 1, Butterworths, London, 140-180.
https://doi.org/10.1016/B978-0-407-01571-5.50008-2
[50]  Loncar, D. and Singer, S.J. (1995) Cell Membrane Formation during the Cellularization of the Syncytial Blastoderm of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 92, 2199-203.
https://doi.org/10.1073/pnas.92.6.2199
[51]  Dudin, O., Ondracka, A., Grau-Bové, X., Haraldsen, A.A., Toyoda, A., Suga, H., Bråte, J. and Ruiz-Trillo, I. (2019) A Unicellular Relative of Animals Generates a Layer of Polarized Cells by Actomyosin-Dependent Cellularization. eLife, 8, e49801.
https://doi.org/10.7554/eLife.49801
[52]  Fleming, H. (2021) Opaque Polyploid Cells in Ishikawa Endometrial Cultures Are Capable of Forming Megamitochondria, Organelles Derived from the Adaptation of Fused Mitochondria Whose Capacity to Develop Gaseous Vacuoles Suggests CO2 Retention and Hypoxic Metabolism. Advances in Bioscience and Biotechnology, 12, 229-255.
https://doi.org/10.4236/abb.2021.127015
[53]  Smith, A.V. and Orr-Weaver, T.L. (1991) The Regulation of the Cell Cycle during Drosophila Embryogenesis: The Transition to Polyteny. Development, 112, 997-1008.
https://doi.org/10.1242/dev.112.4.997
[54]  Stormo, B.M. and Fox, D.T. (2017) Polyteny: Still a Giant Player in Chromosome Research. Chromosome Research, 25, 201-214.
https://doi.org/10.1007/s10577-017-9562-z
[55]  Duncan, A.W., Taylor, M.H., Hickey, R.D., Newell, H.A.E., Lenzi, M.L., Olson, S.B., Finegold, M.J. and Grompe, M. (2011) The Ploidy Conveyor of Mature Hepatocytes as a Source of Genetic Variation. Nature, 467, 707-710.
https://doi.org/10.1038/nature09414
[56]  Schoenfelder, K.P., Montague, R.A., Paramore, S.V., Lennox, A.L., Mahowald, A.P., and Fox, D.T. (2014) Indispensable Pre-mitotic Endocycles Promote Aneuploidy in the Drosophila Rectum. Development, 141, 3551-3560.
https://doi.org/10.1242/dev.109850
[57]  Varmuza, S., Prideaux, V., Kothary, R. and Rossant, J. (1988) Polytene Chromosomes in Mouse Trophoblast Giant Cells. Development, 102, 127-134.
https://doi.org/10.1242/dev.102.1.127
[58]  Walen, K.H. (2004) Spontaneous Cell Transformation: Karyoplasts Derived from Multinucleated Cells Produce New Cell Growth in Senescent Human Epithelial Cell Cultures. In Vitro Cellular & Developmental Biology, 40, 150-158.
https://doi.org/10.1290/1543-706X(2004)40<150:SCTKDF>2.0.CO;2
[59]  Sundaram, M., Guernsey, D.L., Rajaraman, M.M. and Rajaraman, R. (2004) Neosis: A Novel Type of Cell Division in Cancer. Cancer Biology & Therapy, 3, 207-218.
https://doi.org/10.4161/cbt.3.2.663
[60]  Zhang, S., Mercado-Uribe, I., Xing, Z., Sun, B., Kuang, J. and Liu, J. (2014) Generation of Cancer Stem-Like Cells through the Formation of Polyploid Giant Cancer Cells. Oncogene, 33, 116-128.
https://doi.org/10.1038/onc.2013.96
[61]  Liu J. (2018) The Dualistic Origin of Human Tumors. Seminars in Cancer Biology, 53, 1-16.
https://doi.org/10.1016/j.semcancer.2018.07.004
[62]  Gostjeva, E.V., Zukerberg, L., Chung, D. and Thilly, W.G. (2006) Bell-Shaped Nuclei Dividing by Symmetrical and Asymmetrical Nuclear Fission Have Qualities of Stem Cells in Human Colonic Embryogenesis and Carcinogenesis. Cancer Genetics and Cytogenetics, 164, 16-24.
https://doi.org/10.1016/j.cancergencyto.2005.05.005
[63]  Iafrate, A.J., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi, Y., Scherer, S.W. and Lee, C. (2004) Detection of Large-Scale Variations in the Human Genome. Nature Genetics, 36, 949-951.
https://doi.org/10.1038/ng1416
[64]  Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Månér, S., Massa, H., Walker, M., Chi, M., Navin, N., Lucito, R., Healy, J., Hicks, J., Ye, K., Reiner, A., Gilliam, T.C., Trask, B., Patterson, N., Zetterberg, A. and Wigler, M. (2004) Large-Scale Copy Number Polymorphism in the Human Genome. Science, 305, 525-528.
https://doi.org/10.1126/science.1098918
[65]  Liang, Q., Conte, N., Skarnes, W.C. and Bradley, A. (2008) Extensive Genomic Copy Number Variation Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 17453-17456.
https://doi.org/10.1073/pnas.0805638105
[66]  Piotrowski, A., Bruder, C.E., Andersson, R., de Ståhl, T.D., Menzel, U., Sandgren, J., Poplawski, A., von Tell, D., Crasto, C., Bogdan, A., Bartoszewski, R., Bebok, Z., Krzyzanowski, M., Jankowski, Z., Partridge, E.C., Komorowski, J. and Dumanski, J.P. (2008) Somatic Mosaicism for Copy Number Variation in Differentiated Human tissues. Human Mutation, 29, 1118-1124.
https://doi.org/10.1002/humu.20815
[67]  O’Huallachain, M., Karczewski, K.J., Weissman, S.M., Urban, A.E. and Snyder, M.P. (2012) Extensive Genetic Variation in Somatic Human Tissues. Proceedings of the National Academy of Sciences of the United States of America, 109, 18018-18023.
https://doi.org/10.1073/pnas.1213736109
[68]  Ben-David, U. and Amon, A. (2020) Context Is Everything: Aneuploidy in Cancer. Nature Reviews Genetics, 21, 44-62.
https://doi.org/10.1038/s41576-019-0171-x
[69]  Farnie, G., Sotgia, F. and Lisanti, M.P. (2015) High Mitochondrial Mass Identifies a Sub-Population of Stem-Like Cancer Cells That Are Chemo-Resistant. Oncotarget, 6, 30472-30486.
https://doi.org/10.18632/oncotarget.5401
[70]  Lamb, R., Ozsvari, B., Lisanti, C.L., Tanowitz, H.B., Howell, A., Martinez-Outschoorn, U.E., Sotgia, F. and Lisanti, M.P. (2015) Antibiotics that Target Mitochondria Effectively Eradicate Cancer Stem Cells, across Multiple Tumor Types: Treating Cancer Like an Infectious Disease. Oncotarget, 6, 4569-4584.
https://doi.org/10.18632/oncotarget.3174
[71]  Diaz-Carballo,D., Gustmann,S., Jastrow,H., Acikelli,A.H., Dammann,P., Klein,J., et al. (2014) Atypical Cell Populations Associated with Acquired Resistance to Cytostatics and Cancer Stem Cell Features. The Role of Mitochondria in Nuclear Encapsulation. DNA and Cell Biology, 33, 749-774.
https://doi.org/10.1089/dna.2014.2375
[72]  Díaz-Carballo, D., Saka, S., Klein, J., Rennkamp, T., Acikelli, A.H., Malak, S., Jastrow, H., Wennemuth, G., Tempfer, C., Schmitz, I., Tannapfel, A. and Strumberg, D. (2018) A Distinct Oncogenerative Multinucleated Cancer Cell Serves as a Source of Stemness and Tumor Heterogeneity. Cancer Research, 78, 2318-2331.
https://doi.org/10.1158/0008-5472.CAN-17-1861
[73]  Fleming, H. (2019) Tubular Membranes Extended between Monolayer Cells, from Solid Spheroids and from Clustered Hollow Spheroids in Ishikawa Endometrial Cell Cultures Can Carry Chromatin Granules and Mitonucleons. PeerJ, 7, e27895v1.
https://doi.org/10.7287/peerj.preprints.27895v1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133