全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Paleostress Reconstruction from 3D Seismic Data and Slip Tendency in the Northern Slope Area of the Bongor Basin, Southwestern Chad

DOI: 10.4236/ojg.2023.135024, PP. 536-578

Keywords: Seismic Reflection Data, Slip Tendency, Bongor Basin, Stress Inversion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Paleostress plays a significant role in controlling the formation, accumulation, and distribution of reservoirs, and this could be an important factor in controlling the production of hydrocarbons from the unconventional reservoirs. In this study, we will use 3D seismic reflection data to perform the slip-tendency-based stress inversion to determine the stress field in the basement of the northern slope area in the Bongor Basin. The dataset for this technique is easily available in the oil and gas companies. The stress inversion results from the basement of the northern slope area of Bongor basin show that the maximum principal stress axis (σ1) is oriented vertically, the intermediate principal stress axis (σ2) is oriented N18° and the minimum principal stress axis (σ3) is oriented N105°, and σ2/σ1 = 0.60 and σ3/σ1 = 0.29. The findings of this paper provide significant information to understand the fault reactivation at the critical stage of hydrocarbon accumulation and the regional tectonic evolution.

References

[1]  Ferrill, D.A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A. and Morris, A. (1999) Stressed Rock Strains Groundwater at Yucca Mountain, Nevada. GSA Today, 9, 1-7.
[2]  Moeck, I., Kwiatek, G. and Zimmermann, G. (2009) Slip Tendency Analysis, Fault Reactivation Potential and Induced Seismicity in a Deep Geothermal Reservoir. Journal of Structural Geology, 31, 1174-1182.
https://doi.org/10.1016/j.jsg.2009.06.012
[3]  Magoon, L.B. and Dow, W. (1994) The Petroleum System—From Source to Trap. American Association of Petroleum Geologists, Tulsa.
https://doi.org/10.1306/M60585
[4]  Jia, C., Zheng, M. and Zhang, Y. (2012) Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39, 139-146.
https://doi.org/10.1016/S1876-3804(12)60026-3
[5]  Wang, W., Pang, X., Chen, Z., Chen, D., Zheng, T., Luo, B., Li, J. and Yu, R. (2019) Quantitative Prediction of Oil and Gas Prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in Central China. Energy, 174, 861-872.
https://doi.org/10.1016/j.energy.2019.03.018
[6]  Gong, L., Wang, J., Gao, S., Fu, X., Liu, B., Miao, F., Zhou, X. and Meng, Q. (2021) Characterization, Controlling Factors and Evolution of Fracture Effectiveness in Shale Oil Reservoirs. Journal of Petroleum Science and Engineering, 203, Article ID: 108655.
https://doi.org/10.1016/j.petrol.2021.108655
[7]  Zhang, L., Pang, X., Pang, H., Huo, X., Ma, K. and Huang, S. (2022) Hydrocarbon Accumulation Model Based on Threshold Combination Control and Favorable Zone Prediction for the Lower Enping Formation, Southern Lufeng Sag. Advances in Geo-Energy Research, 6, 438-450.
https://doi.org/10.46690/ager.2022.05.08
[8]  Li, H., Yu, F., Wang, M., Wang, Y. and Liu, Y. (2022) Quantitative Prediction of Structural Fractures in the Paleocene Lower Wenchang Formation Reservoir of the Lufeng Depression. Advances in Geo-Energy Research, 6, 375-387.
https://doi.org/10.46690/ager.2022.05.03
[9]  Jamison, W.R. (1992) Stress Controls on Fold Thrust Style. In: McClay, K.R., Ed., Thrust Tectonics, Springer, Berlin, 155-164.
https://doi.org/10.1007/978-94-011-3066-0_13
[10]  Van Der Pluijm, B.A., Craddock, J.P., Graham, B.R. and Harris, J.H. (1997) Paleostress in Cratonic North America: Implications for Deformation of Continental Interiors. Science, 277, 794-796.
https://doi.org/10.1126/science.277.5327.794
[11]  Zain Eldeen, U., Delvaux, U. and Jacobs, P. (2002) Tectonic Evolution in the Wadi Araba Segment of the Dead Sea Rift, South-West Jordan. EGU Stephan Mueller Special Publication Series, 2, 63-80.
https://doi.org/10.5194/smsps-2-63-2002
[12]  Rowland, S.M., Duebendorfer, E.M. and Schiefelbein, I.M. (2007) Structural Analysis & Synthesis: A Laboratory Course in Structural Geology. 4th Edition, Wiley-Blackwell, Hoboken.
[13]  Soumaya, A., Ben Ayed, N., Rajabi, M., Meghraoui, M., Delvaux, D., Kadri, A., Ziegler, M., Maouche, S. and Braham, A. (2018) Active Faulting Geometry and Stress Pattern near Complex Strike-Slip Systems along the Maghreb Region: Constraints on Active Convergence in the Western Mediterranean. Tectonics, 37, 3148-3173.
https://doi.org/10.1029/2018TC004983
[14]  Dasgupta, A., Mukherjee, S., Vanik, N., Chatterjee, R. and Pal, S.K. (2023) Paleostress Analyses and Oblique Rift Kinematics of Barmer Rift Basin, Western Rajasthan, India. Marine and Petroleum Geology. (Submitted)
[15]  Kumar, A., Shaikh, M.A., Singh, S., Singh. T., Mukherjee, S. and Singh, S. (2022) Active Morphogenic Faulting and Paleostress Analyses from the Central Nahan Salient, NW Siwalik Himalaya. International Journal of Earth Sciences, 111, 1251-1267.
https://doi.org/10.1007/s00531-022-02176-3
[16]  Biswas, T., Bose, N., Dutta, D. and Mukherjee, S. (2022) Arc-Parallel Shears in Collisional Orogens: Global Review and Paleostress Analyses from the NW Lesser Himalayan Sequence (Garhwal Region, Uttarakhand, India). Marine and Petroleum Geology, 138, Article ID: 105530.
https://doi.org/10.1016/j.marpetgeo.2022.105530
[17]  Maurya, D.M., Shaikh, M.A. and Mukherjee, S. (2021) Comment on Structural Attributes and Paleostress Analysis of Quaternary Landforms along the Vigodi Fault (VF) in Western Kachchh Region. Quaternary International, 601, 143-147.
https://doi.org/10.1016/j.quaint.2021.04.029
[18]  Misra, A.A., Bhattacharya, G., Mukherjee, S. and Bose, N. (2014) Near N-S Paleo-Extension in the Western Deccan Region in India: Does It Link Strike-Slip Tectonics with India-Seychelles Rifting? International Journal of Earth Sciences, 103, 1645-1680.
https://doi.org/10.1007/s00531-014-1021-x
[19]  Dutta, D., Biswas, T. and Mukherjee, S. (2019) Arc-Parallel Compression in the NW Himalaya: Evidence from Structural and Palaeostress Studies of Brittle Deformation from the Clasts of the Upper Siwalik, Uttarakhand, India. Journal of Earth System Science, 128, 125.
https://doi.org/10.1007/s12040-019-1138-1
[20]  Goswami, T. K., Gogoi, M., Mahanta, B.N., Mukherjee, S., Saikia, H., Shaikh, M.A., Kalita, P., Baral, U. and Sarmah, R.K. (2022) Brittle Tectonics in the Western Arunachal Frontal Fold Belt, India: Change in Stress Regime from Pre-Collisional Extension to Collisional Compression. Geological Journal, 57, 5019-5038.
https://doi.org/10.1002/gj.4393
[21]  Shaikh, M.A., Maurya, D.M., Mukherjee, S., Vanik, N., Padmalal, A. and Chamyal, L. (2020) Tectonic Evolution of the Intra-Uplift Vigodi-Gugriana-Khirasra-Netra Fault System in the Seismically Active Kachchh Rift Basin, India: Implications for the Western Continental Margin of the Indian Plate. Journal of Structural Geology, 140, Article ID: 104124.
https://doi.org/10.1016/j.jsg.2020.104124
[22]  Gartell, A.P. and Lisk, M. (2005) Potential New Method for Paleostress Estimation by Combining Three-Dimensional Fault Restoration and Fault Slip Inversion Techniques: First Test on the Skua Field, Timor Sea. In: Boult, P. and Kaldi, J., Eds., Evaluating Fault and Cap Rock Seals, AAPG Hedberg Series, No. 2, American Association of Petroleum Geologists, Tulsa, 23-26.
[23]  Kulikowski, D. and Amrouch, K. (2018) 4D Modelling of Fault Reactivation Using Complete Paleostress Tensors from the Cooper-Eromanga Basin, Australia. Australian Journal of Earth Sciences, 65, 661-681.
https://doi.org/10.1080/08120099.2018.1465472
[24]  Du Rouchet, J. (1981) Stress Fields, a Key to Oil Migration. American Association of Petroleum Geologists Bulletin, 65, 74-85.
https://doi.org/10.1306/2F919774-16CE-11D7-8645000102C1865D
[25]  Henk, A. (2005) Pre-Drilling Prediction of the Tectonic Stress Field with Geomechanical Models. First Break, 23, 53-57.
https://doi.org/10.3997/1365-2397.2005021
[26]  Gephart, J.W. and Forsyth, D.W. (1984) An Improved Method for Determining the Regional Stress Tensor Using Earthquake Focal Mechanism Data: Application to the San Fernando Earthquake Sequence. Journal of Geophysical Research, 89, 9305-9320.
https://doi.org/10.1029/JB089iB11p09305
[27]  Etchecopar, A., Vasseur, G. and Daignieres, M. (1981) An Inverse Problem in Microtectonics for the Determination of Stress Tensors from Fault Striation Analysis. Journal of Structural Geology, 3, 51-65.
https://doi.org/10.1016/0191-8141(81)90056-0
[28]  Angelier, J. (1984) Tectonic Analysis of Fault Slip Data Sets. Journal of Geophysical Research, 89, 5835-5848.
https://doi.org/10.1029/JB089iB07p05835
[29]  Célérier, B. (1988) How Much Does Slip on a Reactivated Fault Plane Constrain the Stress Tensor? Tectonics, 7, 1257-1278.
https://doi.org/10.1029/TC007i006p01257
[30]  Yamaji, A. (2000) The Multiple Inverse Method: A New Technique to Separate Stresses from Heterogeneous Fault-Slip Data. Journal of Structural Geology, 22, 441-452.
https://doi.org/10.1016/S0191-8141(99)00163-7
[31]  Tezuka, K. and Niitsuma, H. (2000) Stress Estimated Using Microseismic Clusters and Its Relationship to the Fracture System of the Hijiori Hot Dry Rock Reservoir. Engineering Geology, 56, 47-62.
https://doi.org/10.1016/S0013-7952(99)00133-7
[32]  Zalohar, J. and Vrabec, M. (2010) Kinematics and Dynamics of Fault Reactivation: The Cosserat Approach. Journal of Structural Geology, 32, 15-27.
https://doi.org/10.1016/j.jsg.2009.06.008
[33]  Hansen, J.A. (2013) Direct Inversion of Stress, Strain or Strain Rate Including Vorticity: A Linear Method of Homogenous Fault-Slip Data Inversion Independent of Adopted Hypothesis. Journal of Structural Geology, 51, 3-13.
https://doi.org/10.1016/j.jsg.2013.03.014
[34]  Tiwari, S.K., Beniest, A. and Biswal, T.K. (2020) Extension Driven Brittle Exhumation of the Lower-Middle Crustal Rocks, a Paleostress Reconstruction of the Neoproterozoic Ambaji Granulite, NW India. Journal of Asian Earth Sciences, 195, Article ID: 104341.
https://doi.org/10.1016/j.jseaes.2020.104341
[35]  Guiraud, R. and Maurin, J.C. (1992) Early Cretaceous Rifts of Western and Central Africa: An Overview. Tectonophysics, 213, 153-168.
https://doi.org/10.1016/0040-1951(92)90256-6
[36]  Genik, G.J. (1992) Regional Framework, Structural and Petroleum Aspects of Rift Basins in Niger, Chad and the Central African Republic (C.A.R.). In: Ziegler, P.A., Ed., Geodynamics of Rifting, Elsevier, Amsterdam, 169-185.
https://doi.org/10.1016/B978-0-444-89912-5.50036-3
[37]  Dou, L., Xiao, K., Hu, Y., Song, H., Cheng, D. and Du, Y. (2011) Petroleum Geology and a Model of Hydrocarbon Accumulations in the Bongor Basin, the Republic of Chad. Acta Petrolei Sinica, 32, 379-386.
[38]  Tong, X.G., Dou, L., Tian, Z.J., Pan, X.H. and Zhu, X.D. (2004) Geological Mode and Hydrocarbon Accumulation Mode in Muglad Passive Rift Basin of Sudan. Acta Petrolei Sinica, 25, 19-24.
[39]  Tong, X.G., Xu, Z., Shi, B., Dou, L. and Xiao, K. (2006) Petroleum Geologic Property and Reservoir-Forming Pattern of Melut Basin in Sudan. Acta Petrolei Sinica, 27, 1-5.
[40]  Dou, L.R., Pan, X.H., Tian, Z.J., Xiao, K.Y. and Zhang, Z.W. (2006) Hydrocarbon Formation and Distribution of Rift Basins in Sudan—A Comparative Analysis of Them with Rift Basins in East China. Petroleum Exploration and Development, 33, 255-261.
[41]  Macgregor, D.S. (1995) Hydrocarbon Habitat and Classification of Inverted Rift Basins. Geological Society Special Publication, 88, 83-93.
https://doi.org/10.1144/GSL.SP.1995.088.01.06
[42]  Chen, L., Ji, H., Dou, L., Du, Y., Xu, Z., Zhang, L., Yang, X. and Fu, S. (2018) The Characteristics of Source Rock and Hydrocarbon Charging Time of Precambrian Granite Reservoirs in the Bongor Basin, Chad. Marine and Petroleum Geology, 97, 323-338.
https://doi.org/10.1016/j.marpetgeo.2018.06.003
[43]  Morris, A. Ferrill, D.A. and Henderson, D.B. (1996) Slip-Tendency Analysis and Fault Reactivation. Geology, 24, 275-278.
https://doi.org/10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
[44]  Streit, J.E. and Hillis, R.R. (2004) Estimating Fault Stability and Sustainable Fluid Pressures for Underground Storage of CO2 in Porous Rock. Energy, 29, 1445-1456.
https://doi.org/10.1016/j.energy.2004.03.078
[45]  Lisle, R.J. and Srivastava, D.C. (2004) Test of the Frictional Reactivation Theory for Faults and Validity of Fault-Slip Analysis. Geology, 32, 569-572.
https://doi.org/10.1130/G20408.1
[46]  Collettini, C. and Trippetta, F. (2007) A Slip Tendency Analysis to Test Mechanical and Structural Control on Aftershock Rupture Planes. Earth and Planetary Science Letters, 255, 402-413.
https://doi.org/10.1016/j.epsl.2007.01.001
[47]  Barton, C.A., Zoback, M.D. and Moos, D. (1995) Fluid Flow along Potentially Active Faults in Crystalline Rock. Geology, 23, 683-686.
https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2
[48]  Sibson, R.H. (2000) Fluid Involvement in Normal Faulting. Journal of Geodynamics, 29, 469-499.
https://doi.org/10.1016/S0264-3707(99)00042-3
[49]  Stock, J.M., Healy, J.H., Hickman, S.H. and Zoback, M.D. (1985) Hydraulic Fracturing Stress Measurements at Yucca Mountain, Nevada, and Relationship to the Regional Stress Field (USA). Journal of Geophysical Research, 90, 8691-8706.
https://doi.org/10.1029/JB090iB10p08691
[50]  Wiprut, D. and Zoback, M.D. (2002) Fault Reactivation, Leakage Potential, and Hydrocarbon Column Heights in the Northern North Sea. Norweigian Petroleum Society Special Publications, 11, 203-219.
https://doi.org/10.1016/S0928-8937(02)80016-9
[51]  Zhang, X., Koutsabeloulis, N. and Heffer, K. (2007) Hydromechanical Modeling of Critically Stressed and Faulted Reservoirs. AAPG Bulletin, 91, 31-50.
https://doi.org/10.1306/08030605136
[52]  Zoback, M., Barton, C., Finkbeiner, T. and Dholakia, S. (1996) Evidence for Fluid Flow along Critically-Stressed Faults in Crystalline and Sedimentary Rock. In: Jones, G., Fisher, Q. and Knipe, R., Eds., Faulting, Faults Sealing and Fluid Flow in Hydrocarbon Reservoirs, University of Leeds, London, 47-48.
[53]  Takatoshi, I. and Kazuo, H. (2003) Role of Stress-Controlled Flow Pathways in HDR Geothermal Reservoirs. Pure and Applied Geophysics, 60, 1103-1124.
https://doi.org/10.1007/978-3-0348-8083-1_19
[54]  McFarland, J.M., Morris, A.P. and Ferrill, D.A. (2012) Stress Inversion Using Slip Tendency. Computers and Geosciences, 41, 40-46.
https://doi.org/10.1016/j.cageo.2011.08.004
[55]  Ping, G., Liu, X., Li, M., Zhang, X., Gao, Y., Wang, S. and Liu, X. (2022) Using Seismic Data and Slip Tendency to Estimate Paleostress: A Case Study from Xicaogu Area of Bohai Bay Basin, China. Frontiers in Earth Science, 10, Article ID: 812874.
https://doi.org/10.3389/feart.2022.812874

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133