全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2型DKD患者血清焦亡相关蛋白与肾损伤的分析
Analysis of Serum Pyrodeath Re-lated Proteins and Renal Injury in Patients with Type 2 DKD

DOI: 10.12677/ACREM.2023.112009, PP. 53-58

Keywords: 2型糖尿病肾病,细胞焦亡,NLRP3炎症小体,肾损伤
Type 2 Diabetic Nephropathy
, Pyrocytosis, NLRP3 Inflammasome, Renal Injury

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖尿病肾病(DKD)是糖尿病最常见的并发症之一,也是导致终末期肾病的主要原因。全球30%~40%糖尿病患者因病情迁延而进展至DKD,伴有终末期肾病的患者五年生存率 < 20%。因此,延缓DKD进展对于改善患者生存质量具重大意义。目前研究发现,2型DKD发病进展中的无菌性炎症机制与病情进展密切相关。
Diabetic nephropathy (DKD) is one of the most common complications of diabetes and the main cause of end-stage renal disease. Globally, 30%~40% of diabetic patients progress to DKD due to disease delay, and the five-year survival rate of patients with end-stage re-nal disease is less than 20%. Therefore, delaying DKD progression is of great significance for im-proving patients’ quality of life. Current studies have found that the aseptic inflammatory mecha-nism in the progression of type 2 DKD is closely related to the progression of the disease.

References

[1]  Jung, C.Y. and Yoo, T.H. (2022) Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease. Diabetes & Metabolism Journal, 46, 181-197.
https://doi.org/10.4093/dmj.2021.0329
[2]  Thomas, M.C. (2021) Targeting the Pathobiology of Diabetic Kidney Disease. Advances in Chronic Kidney Disease, 28, 282-289.
https://doi.org/10.1053/j.ackd.2021.07.001
[3]  Jung, S.W. and Moon, J.Y. (2021) The Role of Inflammation in Diabetic Kidney Disease. The Korean Journal of Internal Medicine, 36, 753-766.
https://doi.org/10.3904/kjim.2021.174
[4]  Nicholas, S.B. (2021) Novel Anti-Inflammatory and Anti-Fibrotic Agents for Diabetic Kidney Disease—From Bench to Bedside. Advances in Chronic Kidney Disease, 28, 378-390.
https://doi.org/10.1053/j.ackd.2021.09.010
[5]  Tang, S.C.W. and Yiu, W.H. (2020) Innate Immunity in Diabetic Kidney Disease. Nature Reviews Nephrology, 16, 206-222.
https://doi.org/10.1038/s41581-019-0234-4
[6]  Chow, F., Ozols, E., Nikolic-Paterson, D.J., et al. (2004) Macrophages in Mouse Type 2 Diabetic Nephropathy: Correlation with Diabetic State and Progressive Renal Injury. Kidney International, 65, 116-128.
https://doi.org/10.1111/j.1523-1755.2004.00367.x
[7]  Chow, F.Y., Nikolic-Paterson, D.J., Ozols, E., et al. (2006) Monocyte Chemoattractant Protein-1 Promotes the Development of Diabetic Renal Injury in Streptozotocin-Treated Mice. Kidney International, 69, 73-80.
https://doi.org/10.1038/sj.ki.5000014
[8]  Moriya, R., Manivel, J.C. and Mauer, M. (2004) Juxtaglomerular Ap-paratus T-Cell Infiltration Affects Glomerular Structure in Type 1 Diabetic Patients. Diabetologia, 47, 82-88.
https://doi.org/10.1007/s00125-003-1253-y
[9]  Sangiuliano, B., Perez, N.M., Moreira, D.F., et al. (2014) Cell Death-Associated Molecular-Pattern Molecules: Inflammatory Signaling and Control. Mediators Inflammation, 2014, Article ID: 821043.
https://doi.org/10.1155/2014/821043
[10]  Funk, S.L. and Cookson, B.T. (2007) Pyrosis: Host Cell Death and In-flammation. Cell Microbiology, 9, 2562-2570.
https://doi.org/10.1111/j.1462-5822.2007.01036.x
[11]  Rabe, K. and Saleh, M. (2008) Cell Death in the Host Re-sponse to Infection. Cell Death and Differentiation, 15, 1339-1349.
https://doi.org/10.1038/cdd.2008.91
[12]  Xu, J., Jiang, Y., Wang, J., et al. (2014) Macrophage Endocytosis of High-Mobility Group Box 1 Triggers Pyroptosis. Cell Death and Differentiation, 21, 1229-1239.
https://doi.org/10.1038/cdd.2014.40
[13]  Bergsbaken, T., Fink, S.L. and Cookson, B.T. (2009) Pyroptosis: Host Cell Death and Inflammation. Nature Reviews Microbiology, 7, 99-109.
[14]  Huang, X., Shen, H., Liu, Y., Qiu, S. and Guo, Y. (2021) Fisetin Attenuates Periodontitis through FGFR1/TLR4/ NLRP3 Inflammasome Pathway. International Immunopharmacology, 95, Article ID: 107505.
https://doi.org/10.1016/j.intimp.2021.107505
[15]  Zhang, C., Boini, K.M., Xia, M., Abais, J.M., Li, X., Liu, Q. and Li, P.L. (2012) Activation of Nod-Like Receptor Protein 3 Inflammasomes Turns on Podocyte Injury and Glomeru-lar Sclerosis in Hyperhomocysteinemia. Hypertension, 60, 154-162.
https://doi.org/10.1161/HYPERTENSIONAHA.111.189688
[16]  Jorgensen, I., Zhang, Y., Krantz, B.A., et al. (2016) Pyroptosis Triggers Pore-Induced Intracellular Traps (PITs) That Capture Bacteria and Lead to Their Clearance by Efferocytosis. Journal of Experimental Medicine, 213, 2113-2128.
https://doi.org/10.1084/jem.20151613
[17]  Yang, M., et al. (2021) Targeting the NLRP3 Inflammasome in Diabetic Nephropathy. Current Medicinal Chemistry, 28, 8810-8824.
https://doi.org/10.2174/0929867328666210705153109
[18]  Martinon, F., Burns, K. and Tschopp, J. (2002) The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-beta. Molecular Cell, 10, 417-426.
https://doi.org/10.1016/S1097-2765(02)00599-3
[19]  Pandey, A., Shen, C., Feng, S. and Man, S.M. (2021) Cell Biology of Inflammasome Activation. Trends in Cell Biology, 31, 924-939.
https://doi.org/10.1016/j.tcb.2021.06.010
[20]  Nandi, D., Farid, N.S.S., Karuppiah, H.A.R. and Kulkarni, A. (2022) Imaging Approaches to Monitor Inflammasome Activation. Journal of Molecular Biology, 434, Article ID: 167251.
https://doi.org/10.1016/j.jmb.2021.167251
[21]  Halle, A., Hornung, V., Petzold, G.C., Stewart, C.R., Monks, B.G., Reinheckel, T., Fitzgerald, K.A., Latz, E., Moore, K.J. and Golenbock, D.T. (2008) The NALP3 Inflammasome Is In-volved in the Innate Immune Response to Amyloid-beta. Nature Immunology, 9, 857-865.
https://doi.org/10.1038/ni.1636
[22]  Carneiro, L.A., Magalhaes, J.G., Tattoli, I., Philpott, D.J. and Travassos, L.H. (2008) Nod-Like Proteins in Inflammation and Disease. The Journal of Pathology, 214, 136-148.
https://doi.org/10.1002/path.2271
[23]  Inohara, C., McDonald, C. and Nunez, G. (2005) NOD-LRR Proteins: Role in Host-Microbial Interactions and Inflammatory Disease. Annual Review of Biochemistry, 74, 355-383.
https://doi.org/10.1146/annurev.biochem.74.082803.133347
[24]  Segovia, J., Sabbah, A., Mgbemena, V., Tsai, S.Y., Chang, T.H., Berton, M.T., et al. (2012) TLR2/MyD88/NF-kappaB Pathway, Reactive Oxygen Species, Potassium Efflux Activates NLRP3/ASC Inflammasome during Respiratory Syncytial Virus Infection. PLOS ONE, 7, e29695.
https://doi.org/10.1371/journal.pone.0029695
[25]  Stienstra, R., van Diepen, J.A., Tack, C.J., Zaki, M.H., van de Veerdonk, F.L., Perera, D., et al. (2011) Inflammasome Is a Central Player in the Induction of Obesity and Insulin Re-sistance. Proceedings of the National Academy of Sciences of the United States of America, 108, 15324-15329.
https://doi.org/10.1073/pnas.1100255108
[26]  Martinon, F., Burns, K. and Tschopp, J. (2002) The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-beta. Molecular Cell, 10, 417-426.
https://doi.org/10.1016/S1097-2765(02)00599-3
[27]  Srinivasula, S.M., Poyet, J.L., Razmara, M., Datta, P., Zhang, Z. and Alnemri, E.S. (2002) The PYRIN-CARD Protein ASC Is an Activating Adaptor for Caspase-1. Journal of Bio-logical Chemistry, 277, 21119-21122.
https://doi.org/10.1074/jbc.C200179200
[28]  Karmakar, M., Katsnelson, M.A., Dubyak, G.R., et al. (2016) Neu-trophil P2X7 Receptors Mediate NLRP3 Inflammasome-Dependent IL-1β Secretion in Response to ATP. Nature Com-munications, 7, Article No. 10555.
https://doi.org/10.1038/ncomms10555
[29]  Du, X., Que, W., Hu, X., et al. (2021) Oridonin Prolongs the Survival of Mouse Cardiac Allografts by Attenuating the NF-κB/NLRP3 Pathway. Frontiers in Immunology, 12, Article ID: 719574.
https://doi.org/10.3389/fimmu.2021.719574
[30]  Molyvdas, A., Georgopoulou, U., Lazaridis, N., et al. (2018) The Role of the NLRP3 Inflammasome and the Activation of IL-1beta in the Pathogenesis of Chronic Viral Hepatic Inflam-mation. Cytokine, 110, 389-396.
https://doi.org/10.1016/j.cyto.2018.04.032
[31]  Alicic, R.Z., Rooney, M.T. and Tuttle, K.R. (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12, 2032-2045.
https://doi.org/10.2215/CJN.11491116
[32]  Rayego-Mateos, S., Morgado-Pascual, J.L., Opazo-Ríos, L., Guerre-ro-Hue, M., García-Caballero, C., et al. (2020) Pathogenic Pathways and Therapeutic Approaches Targeting Inflamma-tion in Diabetic Nephropathy. International Journal of Molecular Sciences, 21, Article No. 3798.
https://doi.org/10.3390/ijms21113798
[33]  Maiti, A.K. (2021) Development of Biomarkers and Molecular Therapy Based on Inflammatory Genes in Diabetic Nephropathy. International Journal of Molecular Sciences, 22, Article No. 9985.
https://doi.org/10.3390/ijms22189985
[34]  Ralston, J.C., Lyons, C.L., Kennedy, E.B., Kirwan, A.M. and Roche, H.M. (2017) Fatty Acids and NLRP3 Inflammasome Mediated Inflammation in Metabolic Tissues. Annual Review of Nutrition, 37, 77-102.
https://doi.org/10.1146/annurev-nutr-071816-064836
[35]  De Nardo, D. and Latz, E. (2011) NLRP3 Inflam-masomes Link Inflammation and Metabolic Disease. Trends in Immunology, 32, 373-379.
https://doi.org/10.1016/j.it.2011.05.004
[36]  Shahzad, K., Bock, F., Dong, W., et al. (2015) Nlrp3-Inflammasome Activation in Non-Myeloid-Derived Cells Aggravates Diabetic Nephropathy. Kidney International, 87, 74-84.
https://doi.org/10.1038/ki.2014.271
[37]  Xin, R., Sun, X., Wang, Z., et al. (2018) Apocynin Inhibited NLRP3/XIAP Signalling to Alleviate Renal Fibrotic Injury in Rat Diabetic Nephropathy. Biomedicine & Pharmacother-apy, 10, 1325-1331.
https://doi.org/10.1016/j.biopha.2018.07.036
[38]  Zheng, J., Hu, Q., Zou, X., et al. (2022) Uranium Induces Kid-ney Cells Pyroptosis in Culture Involved in ROS/ NLRP3/Caspase-1 Signaling. Free Radical Research, 56, 40-52.
https://doi.org/10.1080/10715762.2022.2032021
[39]  Aizawa, E., Karasawa, T., Watanabe, S., et al. (2020) GSDME-Dependent Incomplete Pyroptosis Permits Selective IL-1α Release under Caspase-1 Inhibition. iScience, 23, Article ID: 101070.
https://doi.org/10.1016/j.isci.2020.101070

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413