全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

木质素二聚体电化学氧化机理的密度泛函理论研究
Density Functional Theory Study on the Electrochemical Oxidation Mechanism of Lignin Dimer

DOI: 10.12677/JAPC.2023.122009, PP. 66-75

Keywords: 制氢,电解水,木质素,电化学氧化,2,4-二叔丁基苯酚
Hydrogen Production
, Water Electrolysis, Lignin, Electrochemical Oxidation, 2,4-Di-Tert-Butylphenol

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了从分子层面了解木质素在碱性溶液中电化学氧化降解过程,构建了以愈创木基丙烷结构单体聚合而成的木质素二聚体理论模型,采用杂化密度泛函B3LYP/6-31G(d)基组对木质素二聚体理论模型进行优化和计算。通过键解离能计算、HOMO和LUMO轨道活性点位分析和势能分析方法研究木质素二聚体反应路径,发现二聚体模化物在电化学氧化反应中,苯环间连接处的C原子是主要反应活性位点,连接两个苯环间的C-C键易断裂,形成的异丁烯碳正离子与苯酚反应生成产物2,4-二叔丁基苯酚,该反应过程能垒为398.6 kJ/mol,吸收热量为0.59 kJ/mol。通过理论建模与计算,阐述了木质素电化学氧化的反应机理,为木质素电化学氧化耦合电解水制氢的优化提供理论支撑。
In order to understand the electro-oxidative degradation process of lignin in alkaline solution from molecular level, a theoretical model of lignin dimer polymerization made of guaiac-based propane monomer was constructed. The hybrid density functional B3LYP/6-31G(d) base group was used to optimize and calculate the initial idea. The lignin dimer reaction pathway was studied by calculating bond dissociation energy, HOMO and LUMO orbital active point analysis and potential energy analysis. It is found that in the electrochemical oxidation reaction of dimer molds, the C atom at the junction between the benzene rings is the main potential reactive site, and the C-C bond connecting the two benzene rings is easy to break, the isobutylene carbodyl ions formed by the reaction process with phenol to form the product of 2,4-di-tert-butylphenol, which has a barrier of 398.6 kJ/mol and only absorbs 0.59 kJ/mol of heat. Through the combination of theoretical modeling and calculation, the reaction mechanism of lignin electrooxidation degradation of lignin is elaborated, which provides theoretical support for the optimization of hydrogen production by electrochemical oxidation of lignin coupled with water electrolysis.

References

[1]  Kim, Y.M., Jae, J., Myung, S., Sung, B.H., Dong, J.I. and Park, Y.K. (2016) Investigation into the Lignin Decomposition Mechanism by Analysis of the Pyrolysis Product of Pinus radiata. Bioresource Technology, 219, 371-377.
https://doi.org/10.1016/j.biortech.2016.08.001
[2]  Movil-Cabrera, O., Rodriguez-Silva, A., Arroyo-Torres, C. and Staser, J.A. (2016) Electrochemical Conversion of Lignin to Useful Chemicals. Biomass & Bioenergy, 88, 89-96.
https://doi.org/10.1016/j.biombioe.2016.03.014
[3]  Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A. and Santos, H.A. (2018) Properties and Chemical Modifications of Lignin: Towards Lignin-Based Nanomaterials for Biomedical Applications. Progress in Materials Science, 93, 233-269.
https://doi.org/10.1016/j.pmatsci.2017.12.001
[4]  Roopan, S.M. (2017) An Overview of Natural Renewable Bio-Polymer Lignin towards Nano and Biotechnological Applications. International Journal of Biological Macromolecules, 103, 508-514.
https://doi.org/10.1016/j.ijbiomac.2017.05.103
[5]  Dessbesell, L., Paleologou, M., Leitch, M., Pulkki, R. and Xu, C. (2020) Global Lignin Supply Overview and Kraft Lignin Potential as an Alternative for Petroleum-Based Polymers. Renewable & Sustainable Energy Reviews, 123, Article ID: 109768.
https://doi.org/10.1016/j.rser.2020.109768
[6]  Li, C.Z., Zhao, X.C., Wang, A.Q., Huber, G.W. and Zhang, T. (2015) Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chemical Reviews, 115, 11559-11624.
https://doi.org/10.1021/acs.chemrev.5b00155
[7]  Sun, Z.H., Fridrich, B., de Santi, A., Elangovan, S. and Barta, K. (2018) Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews, 118, 614-678.
https://doi.org/10.1021/acs.chemrev.7b00588
[8]  Zhang, Z.R., Song, J.L. and Han, B.X. (2017) Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chemical Reviews, 117, 6834-6880.
https://doi.org/10.1021/acs.chemrev.6b00457
[9]  Kloekhorst, A., Shen, Y., Yie, Y., Fang, M. and Heeres, H.J. (2015) Catalytic Hydrodeoxygenation and Hydrocracking of Alcell (R) Lignin in Alcohol/Formic Acid Mixtures Using a Ru/C Catalyst. Biomass & Bioenergy, 80, 147-161.
https://doi.org/10.1016/j.biombioe.2015.04.039
[10]  Lange, H., Decina, S. and Crestini, C. (2013) Oxidative Upgrade of Lignin—Recent Routes Reviewed. European Polymer Journal, 49, 1151-1173.
https://doi.org/10.1016/j.eurpolymj.2013.03.002
[11]  Zhao, X.H., Zhang, Y.J., Hu, H.Y., Huang, Z.Q., Yang, M., Chen, D., Huang, K., Huang, A.M., Qin, X.Z. and Feng, Z.F. (2016) Effect of Mechanical Activation on Structure Changes and Reactivity in Further Chemical Modification of Lignin. International Journal of Biological Macromolecules, 91, 1081-1089.
https://doi.org/10.1016/j.ijbiomac.2016.06.074
[12]  Ju, H., Badwal, S. and Giddey, S. (2018) A Comprehensive Review of Carbon and Hydrocarbon Assisted Water Electrolysis for Hydrogen Production. Applied Energy, 231, 502-533.
https://doi.org/10.1016/j.apenergy.2018.09.125
[13]  Zhao, H. and Yuan, Z.-Y. (2021) Surface/Interface Engineering of High-Efficiency Noble Metal-Free Electrocatalysts for Energy-Related Electrochemical Reactions. Journal of Energy Chemistry, 54, 89-104.
https://doi.org/10.1016/j.jechem.2020.05.048
[14]  Liu, C.J., Ye, L.L., Yuan, W.H., Zhang, Y., Zou, J.B., Yang, J.Z., Wang, Y.Z., Qi, F. and Zhou, Z.Y. (2018) Investigation on Pyrolysis Mechanism of Guaiacol as Lignin Model Compound at Atmospheric Pressure. Fuel, 232, 632-638.
https://doi.org/10.1016/j.fuel.2018.05.162
[15]  段毓, 程皓, 武书彬. 基于密度泛函理论研究木质素二聚体Cα-OH基团的修饰对其热解均裂历程的影响[J]. 燃料化学学报, 2019, 47(12): 1440-1449.
[16]  蒋晓燕, 陈晨, 董晓晨, 陆强, 董长青. α,β-双醚型木质素三聚体模化物热解机理模拟计算[J]. 农业工程学报, 2015, 31(16): 229-234.
[17]  田红, 姚灿, 尹艳山, 刘正伟. 5-5’型木质素二聚体高温热解微观化学反应机理研究[J]. 材料导报, 2016, 30(22): 152-157+163.
[18]  杨倩, 刘贵锋, 吴国民, 孔振武. 木质素化学降解及其在聚合物材料中应用的研究进展[J]. 生物质化学工程, 2020, 54(2): 40-50.
[19]  Fukui, K., Yonezawa, T. and Shingu, H. (1955) A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. The Journal of Chemical Physics, 20, 722-725.
https://doi.org/10.1063/1.1700523
[20]  Garedew, M., Lin, F., Song, B., DeWinter, T.M., Jackson, J.E., Saffron, C.M., Lam, C.H. and Anastas, P.T. (2020) Greener Routes to Biomass Waste Valorization: Lignin Transformation through Electrocatalysis for Renewable Chemicals and Fuels Production. ChemSusChem, 13, 4214-4237.
https://doi.org/10.1002/cssc.202000987

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133