全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ag/HNb3O8纳米片的合成及其光催化性能
Synthesis of Ag/HNb3O8 Nanosheets and Its Photocatalytic Performance

DOI: 10.12677/JAPC.2023.122013, PP. 112-121

Keywords: HNb3O8纳米片,Ag,光催化,氢气
HNb3O8 Nanosheets
, Ag, Photocatalysis, Hydrogen

Full-Text   Cite this paper   Add to My Lib

Abstract:

以商业NbCl5为铌源,通过水热法合成HNb3O8纳米片,然后分别采用光沉积和浸渍的方法制备了Ag/HNb3O8-pp (光沉积)和Ag/HNb3O8 (浸渍方法)光催化剂,对合成的两种催化剂进行了详细的表征,并研究其光催化析氢活性。XRD、FT-IR、SEM和TEM的表征结果说明我们成功合成了负载Ag的HNb3O8纳米片催化剂。UV-vis-NIR分析了各催化剂的能带结构。结果表明:由于Ag的引入,Ag/HNb3O8催化剂表现出了较强的LSPR效应,对可见光和近红外光的吸收得到了增强。光催化测试的结果与表征结果一致,浸渍方法制备的Ag/HNb3O8表现出了较强的析氢速率(889.7 μmol?g?1?h?1),是纯HNb3O8的31.3倍(28.4 μmol?g?1?h?1)。
HNb3O8 nanosheets composites were synthesized by a one-step hydrothermal method using commercial NbCl5 as niobium source. Ag/HNb3O8-PP and Ag/HNb3O8 photocatalysts were prepared by means of photo-deposition and dipping with a certain proportion of Ag on HNb3O8 nanosheets. Besides, the results of XRD, FT-IR, SEM and TEM show that the Ag loaded HNb3O8 nanosheets were successfully synthesized. The band structures of photocatalyst were determined by UV-vis-NIR. Because of loading Ag atom, the more absorption might be associated with LSPR. The photocatalytic tests are consistent with the characterization. The optimal Ag/HNb3O8 displays the highest hydrogen evolution rate (889.7 μmol?g?1?h?1), which is 31.3 times of that for pure HNb3O8 (28.4 μmol?g?1?h?1).

References

[1]  Soliman, K.A., Zedan, A.F., Khalifa, A., et al. (2007) Silver Nanoparticles-Decorated Titanium Oxynitride Nanotube Arrays for Enhanced Solar Fuel Generation. Scientific Reports, 7, Article No. 1913.
https://doi.org/10.1038/s41598-017-02124-1
[2]  Ismail, A.A. and Bahnemann, D.W. (2014) Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review. Solar Energy Materials and Solar Cells, 128, 85-101.
https://doi.org/10.1016/j.solmat.2014.04.037
[3]  Demir, M.E., Chehade, G., Dincer, I., et al. (2019) Synergistic Effects of Advanced Oxidization Reactions in a Combination of TiO2 Photocatalysis for Hydrogen Production and Wastewater Treatment Applications. International Journal of Hydrogen Energy, 44, 23856-23867.
https://doi.org/10.1016/j.ijhydene.2019.07.110
[4]  Mohamed, A.M., Shahan, S.A., El Sayed, H.A., et al. (2016) Morphology-Photoactivity Relationship: WO3 Nanostructured Films for Solar Hydrogen Production. International Journal of Hydrogen Energy, 41, 866-872.
https://doi.org/10.1016/j.ijhydene.2015.09.108
[5]  Jiang, W.Y., Bai, S., Wang, L.M., et al. (2016) Integration of Multiple Plasmonic and Co-Catalyst Nanostructures on TiO2 Nanosheets for Visible-Near-Infrared Photocatalytic Hydrogen Evolution. Small, 12, 1640-1648.
https://doi.org/10.1002/smll.201503552
[6]  Sellappan, R., Nielsen, M.G., Gonzále-Posada, F., et al. (2013) Effects of Plasmon Excitation on Photocatalytic Activity of Ag/TiO2 and Au/TiO2 Nanocomposites. Journal of Catalysis, 307, 214-221.
https://doi.org/10.1016/j.jcat.2013.07.024
[7]  Li, B.X., Zhang, B.S., Nie, S.B., et al. (2017) Optimization of Plasmon-Induced Photocatalysis in Electrospun Au/CeO2 Hybrid Nanofibers for Selective Oxidation of Benzyl Alcohol. Journal of Catalysis, 348, 256-264.
https://doi.org/10.1016/j.jcat.2016.12.025
[8]  Zhang, M.H., Wang, X., Qi, X.W., et al. (2022) Effect of Ag Cocatalyst on Highly Selective Photocatalytic CO2 Reduction to HCOOH over CuO/Ag/UiO-66 Z-Scheme Heterojunction. Journal of Catalysis, 413, 31-47.
https://doi.org/10.1016/j.jcat.2022.06.014
[9]  Yang, M.-Q., Shen, L., Lu, Y., et al. (2019) Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250-2500 nm) Harvesting. Angewandte Chemie International Edition, 58, 3077-3081.
https://doi.org/10.1002/anie.201810694
[10]  Li, J., Cushing, S.K., Bright, J., et al. (2013) Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts. ACS Catalysis, 3, 47-51.
https://doi.org/10.1021/cs300672f
[11]  Chen, J., Wang, H., Zhang, Z., et al. (2019) Ultrathin HNb3O8 Nanosheets with Oxygen Vacancies for Enhanced Photocatalytic Oxidation of Amines under Visible Light Irradiation. Journal of Materials Chemistry A, 7, 5493-5503.
https://doi.org/10.1039/C8TA12118D
[12]  Maczka, M., Ptak, M., Majchrowski, A., et al. (2011) Raman and IR Spectra of K4Nb6O17 and K4Nb6O17·3H2O Single Crystals. Journal of Raman Spectroscopy, 42, 209-213.
https://doi.org/10.1002/jrs.2668
[13]  Liu, H., Zhang, H., Shen, P., et al. (2016) Synergistic Effects in Nanoengineered HNb3O8/Graphene Hybrids with Improved Photocatalytic Conversion Ability of CO2 into Renewable Fuels. Langmuir, 32, 254-264.
https://doi.org/10.1021/acs.langmuir.5b03359
[14]  Huang, C.-W., Nguyen, B.-S., Wu, J.C.S., et al. (2019) A Current Perspective for Photocatalysis towards the Hydrogen Production from Biomass-Derived Organic Substances and Water. International Journal of Hydrogen Energy, 45, 18144-18159.
https://doi.org/10.1016/j.ijhydene.2019.08.121
[15]  Jiang, C., Moniz, S.J.A., Wang, A., et al. (2017) Photoelectrochemical Devices for Solar Water Splitting-Materials and Challenges. Chemical Society Reviews, 46, 4645-4660.
https://doi.org/10.1039/C6CS00306K
[16]  Zhang, M., Wang, J., Xue, H., et al. (2020) Acceptor-Doping Accelerated Charge Separation in Cu2O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. Angewandte Chemie International Edition, 59, 18463-18467.
https://doi.org/10.1002/anie.202007680
[17]  Masoumi, Z., Tayebi, M. and Lee, B.-K. (2020) The Role of Doping Molybdenum (Mo) and Back-Front Side Illumination in Enhancing the Charge Separation of α-Fe2O3 Nanorod Photoanode for Solar Water Splitting. Solar Energy, 205, 126-134.
https://doi.org/10.1016/j.solener.2020.05.044
[18]  Cao, Y., Wang, D., Lin, Y., et al. (2018) Single Pt Atom with Highly Vacant D-Orbital for Accelerating Photocatalytic H2 Evolution. ACS Applied Energy Materials, 1, 6082-6088.
https://doi.org/10.1021/acsaem.8b01143

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133