全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Seismogenic ULF/ELF Wave Phenomena: Recent Advances and Future Perspectives

DOI: 10.4236/ojer.2023.123003, PP. 45-113

Keywords: ULF/ELF Seismogenic Wave Effects, Statistical Significance, Lithosphere-Atmosphere-Ionosphere Coupling

Full-Text   Cite this paper   Add to My Lib

Abstract:

There has been enormous progress in the field of electromagnetic phenomena associated with earthquakes (EQs) and EQ prediction during the last three decades, and it is recently agreed that electromagnetic effects do appear prior to an EQ. A few phenomena are well recognized as being statistically correlated with EQs as promising candidates for short-term EQ predictors: the first is ionospheric perturbation not only in the lower ionosphere as seen by subionospheric VLF (very low frequency, 3 kHz < f < 30 kHz)/LF (low frequency, 30 kHz < f < 300 kHz) propagation but also in the upper F region as detected by ionosondes, TEC (total electron content) observations, satellite observations, etc, and the second is DC earth current known as SES (Seismic electric signal). In addition to the above two physical phenomena, this review highlights the following four physical wave phenomena in ULF (ultra low frequency, frequency < 3 Hz)/ELF (extremely low frequency, 3 Hz <

References

[1]  Hayakawa, M. and Molchanov, O. (2002) Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling. Terrapub, Tokyo, 477 p.
[2]  Pulinets, S. and Boyarchuk, K. (2004) Ionospheric Precursors of Earthquakes. Springer, Berlin, 315 p.
[3]  Molchanov, O.A. and Hayakawa, M. (2008) Seismo-Electromagnetics and Related Phenomena: History and Latest Results. Terrapub, Tokyo, 189 p.
[4]  Hayakawa, M. (2015) Earthquake Prediction with Radio Techniques. John Wiley & Sons, Singapore, 294 p.
https://doi.org/10.1002/9781118770368
[5]  Sorokin, V., Chemyrev, V. and Hayakawa, M. (2015) Electrodynamic Coupling of Lithosphere-Atmosphere-Ionosphere of the Earth. Nova Science Pub. Inc., New York, 326 p.
[6]  Ouzounov, D., Pulinets, S., Hattori, K. and Taylor, P. (2018) Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies. AGU Geophysical Monograph 234, Wiley, Hoboken, 365 p.
https://doi.org/10.1002/9781119156949
[7]  Hayakawa, M. (2011) Probing the Lower Ionosphere by Means of Subionospheric VLF Propagation. Earthquake Science, 24, 609-637.
https://doi.org/10.1007/s11589-011-0823-1
[8]  Hayakawa, M., Asano, T., Rozhnoi, A. and Solovieva, M. (2018) Chapter 16. Very-Low- and Low-Frequency Sounding of Ionospheric Perturbations and Possible Association with Earthquakes. In: Ouzounov, et al., Eds., Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies, AGU Geophysical Monograph, Wiley, Hoboken, 277-304.
https://doi.org/10.1002/9781119156949.ch16
[9]  Liu, J.Y. (2009) Earthquake Precursors Observed in the Ionospheric F-Region. In: Hayakawa, M., Ed., Electromagnetic Phenomena Associated with Earthquakes, Transworld Research Network, Trivandrum, 187-204.
[10]  Liu, J.Y., Hattori, K. and Chen, Y.I. (2018) Application of Total Electron Content Derived from the Global Navigation Satellite System for Detecting Earthquake Precursors. In: D. Ouzounov, et al., Eds., Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies, AGU Geophysical Monograph, Wiley, Hoboken, 305-317.
https://doi.org/10.1002/9781119156949.ch17
[11]  Hayakawa, M., Kasahara, Y., Nakamura, T., Muto, F., Horie, T., Maekawa, S., Hobara, Y., Rozhnoi, A.A., Solovieva, M. and Molchanov, O.A. (2010) A Statistical Study on the Correlation between Lower Ionospheric Perturbations as Seen by Subionospheric VLF/LF Propagation and Earthquakes. Journal of Geophysical Research, 115, A09305.
https://doi.org/10.1029/2009JA015143
[12]  Conti, L., Oiccozza, P. and Sotgiu, A. (2021) A Critical Review of Ground-Based Observations of Earthquake Precursors. Frontiers in Earth Science, 9, Article ID: 676766.
https://doi.org/10.3389/feart.2021.676766
[13]  Picozza, P., Conti, L. and Sotgiu, A. (2021) Looking for Earthquake Precursors: A Critical Review. Frontiers in Earth Science, 9, Article ID: 676775.
https://doi.org/10.3389/feart.2021.676775
[14]  Chen, H., Han, P. and Hattori, K. (2022) Recent Advances and Challenges in the Seismo-Electromagnetic Study: A Brief Review. Remote Sensing, 14, Article No. 5893.
https://doi.org/10.3390/rs14225893
[15]  Parrot, M. and Li, M. (2018) Statistical Analysis of the Ionospheric Density Recorded by the DEMETER Satellite during Seismic Activity. In: Ouzounov, D., et al., Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies, AGU Geophysical Monograph, Wiley, Hoboken, 319-328.
https://doi.org/10.1002/9781119156949.ch18
[16]  Li, M., Shen, X., Parrot, M., Zhang, X., et al. (2020) Primary Joint Statistical Seismic Influence on Ionospheric Parameters Recorded by the CSES and DEMETER Satellites. Journal of Geophysical Research: Space Physics, 125, e2020JA028116.
https://doi.org/10.1029/2020JA028116
[17]  Zeng, L., Yan, R., Parrot, M., Zhu, K., Zhima, Z., Liu, D., Xu, S., Lv, F. and Shen, X. (2022) Statistical Research on Seismo-Ionospheric Ion Density Enhancements Observed via DEMETER. Atmosphere, 13, 1252.
https://doi.org/10.3390/atmos13081252
[18]  Varotsos, P.A. (2015) The Physics of Seismic Electric Signals. TERRAPUB, Tokyo, 338 p.
[19]  Sarlis, N.V. (2018) Statistical Significance of Earth’s Electric and Magnetic Field Variations Preceding Earthquakes in Greece and Japan, Revisited. Entropy, 20, Article No. 561.
https://doi.org/10.3390/e20080561
[20]  Hayakawa, M., Schekotov, A., Izutsu, J. and Nickolaenko, A.P. (2019) Sesimogenic Effects in ULF/ELF/VLF Electromagnetic Waves. International Journal of Electronics and Applied Research, 6, 1-86.
https://doi.org/10.33665/IJEAR.2019.v06i02.001
[21]  Marchetti, D., De Santis, A., D’Arcangelo, S., Poggio, F., Piscini, A., Campuzano, A. and Werneck, V. (2019) Pre-Earthquake Chain Processes Detected from Ground to Satellite Altitude in Preparation of the 2016-2017 Seismic Sequence in Central Italy. Remote Sensing of Environment, 229, 93-99.
https://doi.org/10.1016/j.rse.2019.04.033
[22]  De Santis, A., Marchetti, D., Spogli, L., Cianchini, G., Pavon-Carrasco, F.J., Franceschi, G.D., Di Giovambattista, R., Perrone, L., Qamili, E., Cesaroni, C., de Santis, A., Ippolito, A., Piscini, A., Campuzuzano, S.A., Sabbagh, D., Amoruso, L., Carbone, M., Santoro, M., Abbattista, C. and Drimaco, D. (2019) Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere, 10, 371.
https://doi.org/10.3390/atmos10070371
[23]  He, Y., Zhao, X., Yang, D., Wu, Y. and Li, Q. (2021) A Study to Investigate the Relationship between Ionospheric Disturbances and Seismic Activity Based on Swaem Satellite Data. Physics of the Earth and Planetary Interiors, 323, Article ID: 106826.
https://doi.org/10.1016/j.pepi.2021.106826
[24]  Genzano, N., Filizzola, C., Hattori, K., Pergola, N. and Tramutoli, V. (2020) Statistical Correlation Analysis between Thermal Infrared Anomalies Observed from MTSATs and Large Earthquakes Occurred in Japan (2005-2015). Journal of Geophysical Research: Solid Earth, 126, e2020JB020108.
https://doi.org/10.1029/2020JB020108
[25]  Ghosh, S., Chowdhury, S., Kundu, S., Sasmal, S., Politis, D., Potirakis, S.M., Hayakawa, M., Chakarabarti, S. and Chakraborti, S. (2022) Unusual Surface Latent Heat Flux Variations and Their Critical Dynamics Revealed before Strong Earthquakes. Entropy, 24, Article No. 23.
https://doi.org/10.3390/e24010023
[26]  Ghosh, S., Sasmal, S., Naja, M., Potirakis, S. and Hayakawa, M. (2022) Study of Aerosol Anomaly Associated with Large Earthquakes (M > 6). Advances in Space Research, 71, 129-143.
https://doi.org/10.1016/j.asr.2022.08.051
[27]  Molchan, G.M. (1991) Structure of Optimal Strategies in Earthquake Prediction. Tectonophysics, 193, 267-276.
https://doi.org/10.1016/0040-1951(91)90336-Q
[28]  Rozhnoi, A., Solovieva, M.S., Molchanov, O.A. and Hayakawa, M. (2004) Middle Latitude LF (40 kHz) Phase Variations Associated with Earthquakes for Quiet and Disturbed Geomagnetic Conditions. Physics and Chemistry of the Earth, 29, 589-598.
https://doi.org/10.1016/j.pce.2003.08.061
[29]  Kon, S., Nishihashi, M. and Hattori, K. (2011) Ionospheric Anomalies Possibly Associated with M 6.0 Earthquakes in the Japan Area during 1998-2010: Case Studies and Statistical Study. Journal of Asian Earth Sciences, 41, 410-420.
https://doi.org/10.1016/j.jseaes.2010.10.005
[30]  De Santis, A., Marchetti, D., Pavon-Carroso, F.J., Cianchini, G., Perrone, L., Abbattista, C., Alfonsi, L., Amoruso, L., Campuzano, S.A., Carbone, M., Cesaroni, C., De Franceschi, G., De Santis, A., Di Giovambattista, R., Ippolito, A., Sabbagh, D., Soldani, M., Santoro, F., Spogli, L. and Haagmans, R. (2019) Precursory Worldwide Signatures of Earthquake Occurrences on Sawrm Satellite Data. Scientific Reports, 9, Article No. 20287.
https://doi.org/10.1038/s41598-019-56599-1
[31]  Console, R. (2001) Testing Forecast Earthquake Hypotheses. Tectonophysics, 338, 261-268.
https://doi.org/10.1016/S0040-1951(01)00081-6
[32]  Sarlis, N.V., Skordas, E.S., Christopulos, S.R. and Varotsos, P.A. (2020) Natural Time Analysis: The Area under the Receiver Operating Characteristic Curve of the Fluctuations Minima Preceding Major Earthquakes. Entropy, 22, Article No. 583.
https://doi.org/10.3390/e22050583
[33]  Simoes, F., Pfaff, R., Berthelier, J.-J. and Klenzing, J. (2012) A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms. Space Science Reviews, 168, 551-593.
https://doi.org/10.1007/978-1-4614-5677-3_20
[34]  Pilipenko, V.A. (2012) Impulsive Coupling between the Atmosphere and Ionosphere/Magnetosphere. Space Science Reviews, 168, 533-550.
https://doi.org/10.1007/s11214-011-9859-8
[35]  Surkov, V. and Hayakawa, M. (2014) Ultra and Extremely Low Frequency Electromagnetic Fields. Springer, Tokyo, 486 p.
https://doi.org/10.1007/978-4-431-54367-1
[36]  Nickolaenko, A.P. and Hayakawa, M. (2002) Resonances in the Earth-Ionosphere Cavity. Kluwer Academic Publishers, Dordrecht, 380 p.
[37]  Nickolaenko, A.P. and Hayakawa, M. (2014) Schumann Resonances for Tyros: Essentials of Global Electromagnetic Resonance in the Earth-Ionosphere Cavity. Springer, Tokyo, 348 p.
https://doi.org/10.1007/978-4-431-54358-9
[38]  Schekotov, A. and Hayakawa, M. (2017) ULF/ELF Electromagnetic Phenomena for Short-Term Earthquake Prediction. LAP Lambert Academic Publishing, Beau Bassin, 102 p.
[39]  Sentman, D. (1995) Schumann Resonances. In: Volland, H., Ed., Handbook of Atmospheric Electrodynamics, Vol. 1, CRC Press, Boca Raton, 267-310.
[40]  Price, C. (2016) ELF Electromagnetic Waves: Schuman Resonances. Atmosphere, 7, Article No. 116.
https://doi.org/10.3390/atmos7090116
[41]  Saito, T. (1969) Geomagnetic Pulsations. Space Science Reviews, 10, 319-412.
https://doi.org/10.1007/BF00203620
[42]  Jacobs, J.A. (1970) Geomagnetic Micropulsations. Springer-Verlag, Berlin, 179 p.
https://doi.org/10.1007/978-3-642-86828-3
[43]  Nishida, A. (1978) Geomagnetic Diagnosis of the Magnetosphere. Springer, New York, 256 p.
https://doi.org/10.1007/978-3-642-86825-2
[44]  Hayakawa, M. and Sazhin, S.S. (1992) Mid-Latitude and Plasmaspheric Hiss: A Review. Planetary and Space Science, 40, 1325-1338.
https://doi.org/10.1016/0032-0633(92)90089-7
[45]  Sazhin, S.S. and Hayakawa, M. (1992) Magnetospheric Chorus Emissions: A Review. Planetary and Space Science, 40, 681-697.
https://doi.org/10.1016/0032-0633(92)90009-D
[46]  Sazhin, S.S., Bullough, K. and Hayakawa, M. (1993) Auroral Hiss: A Review. Planetary and Space Science, 41, 153-166.
https://doi.org/10.1016/0032-0633(93)90045-4
[47]  Helliwell, R.A. (1965) Whistlers and Related Ionospheric Phenomena. Stanford University Press, Stanford, 349 p.
[48]  Park, C.G. (1982) Whistlers. In: Volland, H., Ed., Handbook of Atmospherics, Vol. 2, CRC Press, Boca Raton, 21-77.
[49]  Hayakawa, M. (1995) Whistlers. In: Volland, H., Ed., Handbook of Atmospheric Electrodynamics, Vol. 2, CRC Press, Boca Raton, 155-193.
[50]  Rakov, V.A. and Uman, M.A. (2003) Lightning: Physics and Effect. Cambridge University Press, Cambridge, 454-461.
https://doi.org/10.1017/CBO9781107340886
[51]  Singh, V. and Hobara, Y. (2020) Simultaneous Study of VLF/ULF Anomalies Associated with Earthquakes in Japan. Open Journal of Earthquake Research, 9, 201-215.
https://doi.org/10.4236/ojer.2020.92012
[52]  Yusof, K.A., Abdallah, M., Hamid, N.S.A. and Ahadi, S. (2022) Correlations between Earthquake Properties and Characteristics of Possible ULF Geomagnetic Precursor over Multiple Earthquakes. Universe, 7, Article No. 20.
https://doi.org/10.3390/universe7010020
[53]  Stanica, D.A. and Stanica, D. (2019) ULF Pre-Seismic Geomagnetic Anomalous 2017, En Signal Related to Mw8.1 Offshore Chiapas Earthquake, Mexico on 8 September 2017. Entropy, 21, Article No. 29.
https://doi.org/10.3390/e21010029
[54]  Zhou, H., Yan, F., Wang, J., Luo, Q. and Jin, T. (2019) Study on the ULF Geomagnetic Field Generated by Earth Currents Relating to Large Earthquakes. Radio Science, 56, e2019RS006992.
https://doi.org/10.1029/2019RS006992
[55]  Feng, L., Qu, R., Ji, Y., Zhu, W., Zhu, Y., Feng, Z., Fan, W., Guan, Y. and Xie, C. (2022) Multistationary Geomagnetic Vertical Intensity Polarization Anomalies for Predicting M ≥ 6 Earthquakes in Qinghai, China. Applied Sciences, 12, Article No. 8888.
https://doi.org/10.3390/app12178888
[56]  Xiang, C., Li, M., Ma, Z., Teng, C., Li, Z. and Shao, Z. (2022) Ultra-Low Frequency Electromagnetic Emissions Registered during the 21 May 2021 Yangbi Ms 6.4 Earthquake in China. Natural Science, 14, 1-12.
https://doi.org/10.4236/ns.2022.141001
[57]  Moore, G.W. (1964) Magnetic Disturbances Preceding the 1964 Alaska Earthquake. Nature, 203, 508-509.
https://doi.org/10.1038/203508b0
[58]  Fraser-Smith, A.C., Bernardi, A., McGill, P.R., Ladd, M.E., Helliwell, R.A. and Villard Jr., O.G. (1990) Low-Frequency Magnetic Field Measurements near the Epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophysical Research Letters, 17, 1465-1468.
https://doi.org/10.1029/GL017i009p01465
[59]  Kopytenko, Yu.A., Matiashvily, T.G., Voronov, P.M., Kopytenko, E.A. and Molchanov, O.A. (1990) Detection of ULF Emission Connected with the Spitak Earthquake and Its Aftershock Activity Based on Geomagnetic Pulsations Data at Dusheti and Vardziya Observatories. Physics of the Earth and Planetary Interiors, 77, 85-95.
https://doi.org/10.1016/0031-9201(93)90035-8
[60]  Molchanov, O.A., Kopytenko, Yu.A., Voronov, P.M., Kopytenko, E.A., Matiashvily, T.G., Fraser-Smith, A.C. and Bernardi, A. (1992) Results of ULF Magnetic Field Measurements near the Epicenters of the Spitac (Ms = 6.9) and Loma Prieta (Ms = 7.1) Earthquakes: Comparative Analysis. Geophysical Research Letters, 19, 1495-1498.
https://doi.org/10.1029/92GL01152
[61]  Hayakawa, M., Kawate, R., Molchanov, O.A. and Yumoto, K. (1996) Results of Ultra-Low-Frequency Magnetic Field Measurements during the Guam Earthquake of 8 August 1993. Geophysical Research Letters, 23, 241-244.
https://doi.org/10.1029/95GL02863
[62]  Hayakawa, M., Hattori, K. and Ohta, K. (2007) Monitoring of ULF (Ultra Low Frequency) Geomagnetic Variations Associated with Earthquakes. Sensors, 7, 1108-1122.
https://doi.org/10.3390/s7071108
[63]  Hayakawa, M., Hobara, Y., Ohta, K. and Hattori, K. (2011) The Ultra-Low-Frequency Magnetic Disturbances Associated with Earthquakes. Earthquake Science, 24, 523-534.
https://doi.org/10.1007/s11589-011-0814-2
[64]  Hattori, K. (2004) ULF Geomagnetic Changes Associated with Large Earthquakes. Terrestrial, Atmospheric and Oceanic Sciences, 15, 329-360.
https://doi.org/10.3319/TAO.2004.15.3.329(EP)
[65]  Hattori, K. (2013) ULF Geomagnetic Changes Associated with Earthquakes. In: Hayakawa, M., Ed., Earthquake Prediction Studies: Seismo Electromagnetics, TERRAPUB, Tokyo, 129-152.
[66]  Shrivastava, A. (2014) Are Pre-Seismic ULF Electromagnetic Emissions as a Reliable Earthquake Prediction? Current Science, 107, 596-600.
[67]  Piriyev, R. (2021) Electromagnetic Earthquake Precursory Signatures in the ULF Range: Perspectives of the Studies. Geophysics, 1, 48-57.
https://doi.org/10.54252/2304-7380_2021_29_30
[68]  Heavin, W.D., Kappler, K., Yang, L., Fan, M., Hickey, J., Lemon, J., MacLean, L., Bleier, T., Riley, P. and Schneider, D. (2022) Case-Concept Study on a Decade of Ground-Based Magnetometers in California Reveals Modest Signal 24-72 h Prior to Earthquakes. Journal of Geophysical Research, Solid Earth, 127, e2022JB024109.
https://doi.org/10.1029/2022JB024109
[69]  Han, P., Hattori, K., Hirokawa, M., Zhuang, J., Chen, C.H., Febriani, F., Yamaguchi, H., Yoshino, C., Liu, J.Y. and Yoshida, S. (2014) Statistical Analysis of ULF Seismomagnetic Phenomena at Kakioka, Japan, during 2001-2010. Journal of Geophysical Research: Space Physics, 119, 4998-5011.
https://doi.org/10.1002/2014JA019789
[70]  Han, P., Hattori, K., Hirrooka, M., Zhuang, J., Chen, C.H., Febriani, F., Yamaguchi, H., YoshIno, C., Liu, J.Y. and Yoshida, S. (2017) Evaluation of ULF Seismo-Magnetic Phenomena in Kakioka, Japan by Using Molchan’s Error Diagram. Geophysical Journal International, 208, 482-490.
https://doi.org/10.1093/gji/ggw404
[71]  Masci, F. and Thomas, J. (2015) Are There Any New Findings in the Research for ULF Magnetic Precursors to Earthquakes? Journal of Geophysical Research, Space Physics, 120, 10,289-10,304.
https://doi.org/10.1002/2015JA021336
[72]  Warden, S., MacLean, L., Lemon, J. and Scneider, D. (2020) Statistical Analysis of Pre-Earthquake Electromagnetic Anomalies in the ULF Range. Journal of Geophysical Research: Space Physics, 125, e2020JA027955.
https://doi.org/10.1029/2020JA027955
[73]  Currie, J.L. and Waters, C.L. (2014) On the Use of Geomagnetic Indices and ULF Waves for Earthquake Precursor Signatures. Journal of Geophysical Research: Space Physics, 119, 992-1003.
https://doi.org/10.1002/2013JA019530
[74]  Schekotov, A.Y., Molchanov, O.A., Hayakawa, M., Fedorov, E.N., Chebrov, V.N., Sinitsin, V.I., Gordeev, E.E., Belyaev, G.G. and Yagova, N.V. (2007) ULF/ELF Magnetic Field Variations from Atmosphere Induced by Seismicity. Radio Science, 42, RS6S90.
https://doi.org/10.1029/2005RS003441
[75]  Schekotov, A., Fedorov, E., Molchanov, O.A. and Hayakawa, M. (2013) Low Frequency Electromagnetic Precursors as a Prospect for Earthquake Prediction. In: Hayakawa, M., Ed., Earthquake Prediction Studies: Seismo Electromagnetics, TERRAPUB, Tokyo, 81-99.
[76]  Ohta, K., Izutsu, J., Schekotov, A. and Hayakawa, M. (2013) The ULF/ELF Electromagnetic Radiation before the 11 March 2011 Japanese Earthquake. Radio Science, 48, 589-596.
https://doi.org/10.1002/rds.20064
[77]  Campbell, W.H. (2009) Natural Magnetic Disturbance Fields, Not Precursors, Preceding the Loma Prieta Earthquake. Journal of Geophysical Research, 114, A05307.
https://doi.org/10.1029/2008JA013932
[78]  Masci, F. (2011) On the Seismogenic Increase of the Ratio of the ULF Geomagnetic Field Components. Physics of the Earth and Planetary Interiors, 187, 19-32.
https://doi.org/10.1016/j.pepi.2011.05.001
[79]  Anagnostopoulos, G. (2021) On the Origin of ULF Magnetic Waves before the Taiwan Chi-Chi 1999 Earthquake. Frontiers in Earth Science, 9, Article ID: 730162.
https://doi.org/10.3389/feart.2021.730162
[80]  Novruzov, E.S. and Piriyev, R.H. (2015) Efficiency of Magnetotelluric Monitoring in the Study of Geodynamic Process. Gorno-Geologicheskiy Zhurnal, 3-4, 36-39. (In Russian)
[81]  Serita, A., Hattori, K., Yoshino, C., Hayakawa, M. and Isezaki, N. (2005) Principal Component Analysis and Singular Spectral Analysis of ULF Geomagnetic Data Associated with Earthquakes. Natural Hazards, 5, 685-689,
https://doi.org/10.5194/nhess-5-685-2005
[82]  Kasdi, A.S., Bouzid, A., Hamoudi, M. and Abtout, A. (2022) Singular Spectral Analysis Applied to Magnetotelluric Time Series Collected at Medea Geomagnetic Observatory (Algeria)—An Attempt to Discriminate Earthquake-Related Electromagnetic Signal. Arabian Journal of Geosciences, 15, Article No. 1178.
https://doi.org/10.1007/s12517-022-10438-2
[83]  Iamaguilov, V., Kopytenko, Y.A., Hattori, K., Voronov, P., Molchanov, O. and Hayakawa, M. (2001) ULF Magnetic Emissions Connected with Under-Sea Bottom Earthquakes. Natural Hazards and Earth System Sciences, 1, 23-31.
https://doi.org/10.5194/nhess-1-23-2001
[84]  Kopytenko, Y.A., Ismaguilov, V.S., Hattori, K. and Hayakawa, M. (2006) Determination of Hearth Position of a Forthcoming Strong EQ Using Gradients and Phase Velocities of ULF Geomagnetic Disturbances. Natural Hazards and Earth System Sciences, 31, 292-298.
https://doi.org/10.1016/j.pce.2006.02.004
[85]  Gotoh, K., Akinaga, Y., Hayakawa, M. and Hattori, K. (2003) Principal Component Analysis of ULF Geomagnetic Data for Izu Islands Earthquakes in July 2000. Journal of Atmospheric Electricity, 22, 1-12.
https://doi.org/10.1541/jae.22.1
[86]  Surkov, V.V., Molchanov, O.A. and Hayakawa, M. (2004) A Direction Finding Technique for the ULF Electromagnetic Source. Natural Hazards and Earth System Sciences, 4, 513-517.
https://doi.org/10.5194/nhess-4-513-2004
[87]  DeVries, P.M.R., Viegas, M. and Wattenberg, M. (2018) Deep Learning of Aftershock Patterns Following Large Earthquakes. Nature, 560, 632-634.
https://doi.org/10.1038/s41586-018-0438-y
[88]  Popova, I., Rozhnoi, A., Solovieva, M., Levin, B., Hayakawa, M., Hobara, Y., Biagi, P.F. and Schwingenschuh, K. (2013) Neural Network Approach to the Prediction of Seismic Events Based on Low-Frequency Signal Monitoring of the Kuril-Kamchatka and Japanese Regions. Annales Geophysicae, 56, R0328.
https://doi.org/10.4401/ag-6224
[89]  Akyol, A.A., Arikan, O. and Arikan, F. (2020) A Machine Learning-Based Detection of Earthquake Precursors Using Ionospheric Data. Radio Science, 55, e2019RS0006931.
https://doi.org/10.1029/2019RS006931
[90]  Asaly, S., Gottlieb, L.-A., Inbar, N. and Reuveni, Y. (2022) Using Support Vector Machine (SVM) with Ionospheric TEC Estimation to Potentially Predict Earthquake Events. Remote Sensing, 14, Article No. 2822.
https://doi.org/10.3390/rs14122822
[91]  Akhoozadeh, M. (2014) Investigation of GPS-TEC Measurements Using ANN Method Indicating Seismo-Ionospheric Anomalies around the Time of the Chile (Mw = 8.2) Earthquakes of 01 April 2014. Advance in Space Research, 54, 1768-1772.
https://doi.org/10.1016/j.asr.2014.07.013
[92]  Xiong, P., Long, C., Zhou, H., Zhang, X. and Shen, X. (2022) GNSS TEC-Based Earthquake Ionospheric Perturbation Detection Using a Novel Deep Learning Framework. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 4248-4263.
https://doi.org/10.1109/JSTARS.2022.3175961
[93]  Petrescu, L. and Moldovan, I.-A. (2022) Prospective Neural Network Model for Seismic Precursory Signal Detection in Geomagnetic Field Records. Machine Learning Knowledge Extraction, 4, 912-923.
https://doi.org/10.3390/make4040046
[94]  Mizutani, H. and Ishido, T. (1976) A New Interpretation of Magnetic Field Variation Associated with Matsushiro Earthquakes. Journal of Geomagnetism and Geoelectricity, 28, 179-188.
https://doi.org/10.5636/jgg.28.179
[95]  Mizutani, H., Ishiso, T., Yokokura, T. and Ohnishi, S. (1976) Electrokinetic Phenomena Associated with Earthquakes. Geophysical Research Letters, 3, 365-368.
https://doi.org/10.1029/GL003i007p00365
[96]  Fitterman, D.V. (1979) Theory of Electrokinetic Magnetic Anomalies in Faulted Half-Space. Journal of Geophysical Research, 84, 6031-6040.
https://doi.org/10.1029/JB084iB11p06031
[97]  Fenoglio, M.A., Johnston, M.J.S. and Byerlee, J.D. (1995) Magnetic and Electric Fields Associated with Changes in High Pore Pressure in Fault Zone—Application to the Loma Prieta ULF Emissions. Journal of Geophysical Research: Solid Earth, 100, 12951-12958.
https://doi.org/10.1029/95JB00076
[98]  Dudkin, F., De Santis, A. and Korepanov, V. (2003) Active EM Sounding for Early Warning of Earthquakes and Volcanic Eruption. Physics of the Earth and Planetary Interiors, 139, 187-195.
https://doi.org/10.1016/S0031-9201(03)00157-2
[99]  Molchanov, O.A. and Hayakawa, M. (1995) Generation of ULF Electromagnetic Emissions by Microfracturing. Geophysical Research Letters, 22, 3091-3094.
https://doi.org/10.1029/95GL00781
[100]  Tzanis, A. and Vallianatos, F. (2002) A Physical Model of Electric Earthquake Precursors Due to Crack Propagation and the Motion of Charged Edge Dislocations. In: Hayakawa, M. and Molchanov, O.A., Eds., Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 117-130.
[101]  Surkov, V.V. (1999) ULF Electromagnetic Perturbations Resulting from the Fracture and Dilatancy in the Earthquake Preparation Zone. In: Hayakawa, M., Ed., Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, TERRAPUB, Tokyo, 371-382.
[102]  Surkov, V., Molchanov, O.A. and Hayakawa, M. (2003) Pre-Earthquake ULF Electromagnetic Perturbations as a Result of Inductive Seismogenic Phenomena during Microfracturing. Journal of Atmospheric and Solar-Terrestrial Physics, 65, 31-46.
https://doi.org/10.1016/S1364-6826(02)00117-7
[103]  Feder, J. (1988) Fractals. Springer Verlag, New York, 310 p.
https://doi.org/10.1007/978-1-4899-2124-6
[104]  Falconer, K. (2014) Fractal Geometry: Mathematical Foundations and Applications. 3rd Edition, John Wiley & Sons, Hoboken, 400 p.
[105]  Mandelbrot, B.B. (2021) The Fractal Geometry of Nature. Echo Point Books & Media, LLC, Brattleboro, 500 p.
[106]  Varotsos, P.A., Sarlis, N.V. and Skordas, E.S. (2011) Natural Time Analysis: The New View of Time. Springer, Berlin, 449 p.
https://doi.org/10.1007/978-3-642-16449-1
[107]  Hayakawa, M., Ito, T. and Smirnova, N. (1999) Fractal Analysis of ULF Geomagnetic Data Associated with the Guam Earthquake on August 8, 1993. Geophysical Research Letters, 26, 2797-2800.
https://doi.org/10.1029/1999GL005367
[108]  Smirnova, N., Hayakawa, M., Gotoh, K. and Volobuev, D. (2001) Scaling Characteristics of ULF Geomagnetic Fields at the Guam Seismoactive Area and Their Dynamics in Relation to the Earthquake. Natural Hazards and Earth System Sciences, 1, 119-126.
https://doi.org/10.5194/nhess-1-119-2001
[109]  Gotoh, K., Hayakawa, M. and Smirnova, N. (2003) Fractal Analysis of the ULF Geomagnetic Data Obtained in the Izu Peninsula, Japan in Relation to the Nearby Earthquake Swarm of June-August 2000. Natural Hazards and Earth System Sciences, 3, 229-236.
https://doi.org/10.5194/nhess-3-229-2003
[110]  Ida, Y., Yang, D., Li, Q., Sun, H. and Hayakawa, M. (2012) Fractal Analysis of ULF Electromagnetic Emissions in Possible Association with Earthquakes in China. Nonlinear Processes in Geophysics, 19, 577-583.
https://doi.org/10.5194/npg-19-577-2012
[111]  Varotsos, P.A., Sarlis, N.V. and Skordas, E.S. (2019) Phenomena Preceding Major Earthquakes Interconnected through a Physical Model. Annales Geophysicae, 37, 315-324.
https://doi.org/10.5194/angeo-37-315-2019
[112]  Salis, N.V. and Skordas, E.S. (2018) Study in Natural Time of Geoelectric Field and Seismicity Changes Preceding the Mw6.8 Earthquake on 25 October 2018 in Greece. Entropy, 20, Article No. 882.
https://doi.org/10.3390/e20110882
[113]  Rundel, J.B., Luginbuhl, M., Giguere, A. and Turcott, D.L. (2018) Natural Time, Nowcasting and the Physics of Earthquakes: Estimation of Seismic Risk to Global Megacities. Pure and Applied Geophysics, 175, 647-660.
https://doi.org/10.1007/s00024-017-1720-x
[114]  Potirakis, S.M., Asano, T. and Hayakawa, M. (2018) Critical Analysis of the Lower Ionosphere Prior to the 2016 Kumamoto (Japan) Earthquakes as Based on VLF Electromagnetic Wave Propagation Data Observed at Multiple Stations. Entropy, 20, Article No. 199.
https://doi.org/10.3390/e20030199
[115]  Potirakis, S.M., Contoyiannis, Y., Eftaxias, K. and Hayakawa, M. (2020) Evidence of Critical Dynamics in Various Electromagnetic Precursors. The European Physical Journal Special Topics, 230, 151-177.
https://doi.org/10.1140/epjst/e2020-000249-x
[116]  Politis, D.Z., Potirakis, S.M., Contoyiannis, Y.F., Biswas, S., Sasmal, S. and Hayakawa, M. (2021) Statistical and Critical Analysis of the Lower Ionosphere Prior to the 30 October 2020 Samos (Greece) Earthquakes (M6.9) Based on VLF Electromagnetic Propagation Data as Recorded by a New VLF/LF Receiver Installed at Athens (Greece). Entropy, 23, Article No. 676.
https://doi.org/10.3390/e23060676
[117]  Hayakawa, M., Schekotov, A., Potirakis, P.M. and Eftaxias, K. (2015) Critical Features in ULF Magnetic Fields Prior to the 2011 Tohoku Earthquake. Proceedings of the Japan Academy, Ser. B, Physical and Biological Sciences, 91, 25-30.
https://doi.org/10.2183/pjab.91.25
[118]  Potirakis, P.M., Eftaxias, K., Schekotov, A., Yamaguchi, H. and Hayakawa, M. (2016) Critical Features in Ultra-Low Frequency Magnetic Fields Prior to the 2013 Kobe Earthquake. Annales Geophysicae, 59, S0317.
https://doi.org/10.4401/ag-6863
[119]  Molchanov, O.A., Schekotov, A.Yu., Fedorov, E.N., Belyaev, G.G. and Gordeev, E.E. (2003) Preseismic ULF Electromagnetic Effect from Observation at Kamchatka. Natural Hazards and Earth System Sciences, 3, 203-209.
https://doi.org/10.5194/nhess-3-203-2003
[120]  Molchanov, O.A., Schekotov, A.Yu., Fedorov, E., Belyaev, G., Solovieva, M.S. and Hayakawa, M. (2004) Preseismic ULF Effect and Possible Interpretation. Annales Geophysicae, 47, 119-131.
[121]  Schekotov, A., Molchanov, O., Hattori, K., Fedorov, E., Gladyshev, V.A., Belyaev, G.G., Chebrov, V., Sinitsin, V., Gordeev, E. and Hayakawa, M. (2006) Seismo-Ionospheric Depression of the ULF Geomagnetic Fluctuations at Kamchatka and Japan. Physics and Chemistry of the Earth, 31, 313-318.
https://doi.org/10.1016/j.pce.2006.02.043
[122]  Schekotov, A., Fedorov, E., Hobara, Y. and Hayakawa, M. (2013) ULF Magnetic Field Depression as a Possible Precursor to the 2011/3.11 Japan Earthquake. Journal of Atmospheric Electricity, 33, 41-51.
https://doi.org/10.1541/jae.33.41
[123]  Hayakawa, M., Schekotov, A., Fedorov, E. and Hobara, Y. (2013) On the Ultra-Low- Frequency Magnetic Field Depression for Three Huge Oceanic Earthquakes in Japan and in the Kurile Islands. Earth Science Research, 2, 33-42.
https://doi.org/10.5539/esr.v2n1p33
[124]  Hayakawa, M., Rozhnoi, A., Solovieva, M., Hobara, Y. and Ohta, K. (2013) The Lower Ionospheric Perturbation as a Precursor to the 11 March 2011 Japan Earthquake. Geomatics, Natural Hazards and Risk, 4, 275-287.
https://doi.org/10.1080/19475705.2012.751938
[125]  Schekotov, A., Chebrov, D., Hayakawa, M., Belyaev, G. and Berseneva, N. (2020) Short-Term Earthquake Prediction in Kamchatka Using Low-Frequency Magnetic Fields. Natural Hazards, 100, 735-755.
https://doi.org/10.1007/s11069-019-03839-2
[126]  Hayakawa, M., Izutsu, J., Schekotov, A., Yang, S.S., Solovieva, M. and Budilova, E. (2021) Lithosphere-Atmosphere-Ionosphere Coupling Effects Based on Multiparameter Precursor Observations for February-March 2021 Earthquakes (M~7) in the Offshore of Tohoku Area of Japan. Geosciences, 11, 481.
https://doi.org/10.3390/geosciences11110481
[127]  Hayakawa, M., Schekotov, A., Izutsu, J., Yang, S.S., Solovieva, M. and Hobara, Y. (2022) Multi-Parameter Observation of Seismogenic Phenomena Related to the Tokyo Earthquake (M = 5.9) on 7 October 2021. Geosciences, 12, 265.
https://doi.org/10.3390/geosciences12070265
[128]  Alperovich, L.S. and Fedorov, E.N. (2007) Hydromagnetic Waves in the Magnetosphere and the Ionosphere. Series: Astrophysics and Space Science Library, Vol. 353, Springer, Berlin, 418 p.
[129]  Hayakawa, M., Molchanov, O.A., Ondoh, T. and Awai, E. (1996) The Precursory Signature Effect of the Kobe Earthquake on VLF Subionospheric Signals. Journal of the Communications Research Laboratory, 43, 169-180.
[130]  Biagi, P.F., Piccolo, R., Castellana, L., Ermini, A., Martellucci, S., Bellecci, C., Capozzi, V., Perna, G., Molchanov, O.A. and Hayakawa, M. (2004) Variations in a LF Radio Signal on the Occasion of the Recent Seismic and Volcanic Activity in Southern Italy. Physics and Chemistry of the Earth, 29, 551-557.
https://doi.org/10.1016/j.pce.2003.10.005
[131]  Chakrabarti, S.K. (2010) Propagation Effects of Very Low Frequency Radio Waves. AIP (American Institute of Physics) Conference Proceeding, Vol. 1286, Springer, Berlin, 362 p.
[132]  Molchanov, O.A. and Hayakawa, M. (1998) Subionospheric VLF Signal Perturbations Possibly Related to Earthquakes. Journal of Geophysical Research, 103, 17,489-17,504.
https://doi.org/10.1029/98JA00999
[133]  Rozhnoi, A., Solovieva, M., Molchanov, O., Biagi, P. and Hayakawa, M. (2007) Observational Evidences of Atmospheric Gravity Waves Induced by Seismic Activity from Analysis of Subionospheric LF Signal Spectra. Natural Hazards and Earth System Sciences, 7, 625-628.
https://doi.org/10.5194/nhess-7-625-2007
[134]  Rozhnoi, A., Solovieva, M. and Hayakawa, M. (2013) VLF/LF Signals Method for Searching of Electromagnetic Earthquake Precursors. In: Hayakawa, M., Ed., Earthquake Prediction Studies: Seismo Electromagnetics, TERRAPUB, Tokyo, 31-48.
[135]  Shvets, A.V., Hayakawa, M. and Molchanov, O.A. (2002) Subionospheric VLF Monitoring for Earthquake-Related Ionospheric Perturbations. Journal of Atmospheric Electricity, 22, 87-99.
https://doi.org/10.1541/jae.22.87
[136]  Sasmal, S. and Chakrabarti, S.K. (2009) Ionospheric Anomaly Due to Seismic Activities-Part 1: Calibration of the VLF Signal of VTX 18.2 kHz Station from Kolkata and Deviation during Seismic Events. Natural Hazards and Earth System Sciences, 9, 1403-1408.
https://doi.org/10.5194/nhess-9-1403-2009
[137]  Pal, P., Sasmal, S. and Chakrabarti, S.K. (2017) Studies of Seismo-Ionospheric Correlations Using Anomalies in Phase of Very Low Frequency Signal. Geomatics, Natural Hazards and Risk, 8, 167-176.
https://doi.org/10.1080/19475705.2016.1161666
[138]  Hughes, W.J. and Southwood, D.J. (1976) The Screening of Micropulsation Signals by the Atmosphere and Ionosphere. Journal of Geophysical Research, 81, 3234-3240.
https://doi.org/10.1029/JA081i019p03234
[139]  Sorokin, V.M., Fedorov, E.N., Schekotov, A.V., Molchanov, O.A. and Hayakawa, M. (2004) Depression of the ULF Pulsation Related to Ionospheric Irregularities. Annales Geophysicae, 47, 192-198.
[140]  Hayakawa, M., Molchanov, O.A. and NASDA/UEC Team (2004) Summary Report of NASDA’s Earthquake Remote Sensing Frontier Project. Physics and Chemistry of the Earth, 29, 617-625.
https://doi.org/10.1016/j.pce.2003.08.062
[141]  Pulinets, S. and Ouzounov, D. (2011) Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) Model—A Unified Concept for Earthquake Precursors Validation. Journal of Asian Earth Sciences, 41, 371-382.
https://doi.org/10.1016/j.jseaes.2010.03.005
[142]  Sorokin, V.M., Yaschenko, A.K. and Hayakawa, M. (2006) Formation Mechanism of the Lower-Ionospheric Disturbances by the Atmospheric Electric Current over a Seismic Region. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1260-1268.
https://doi.org/10.1016/j.jastp.2006.03.005
[143]  Sorokin, V. and Hayakawa, M. (2014) Plasma and Electromagnetic Effects Caused by the Seismic-Related Disturbances of Electric Current in the Global Circuit. Modern Applied Sciences, 8, 61-83.
https://doi.org/10.5539/mas.v8n4p61
[144]  Harrison, R.G., Alpin, K.L. and Rycroft, M.J. (2010) Atmospheric Electricity Coupling between Earthquake Regions and the Ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 376-381.
https://doi.org/10.1016/j.jastp.2009.12.004
[145]  Molchanov, O.A., Hayakawa, M. and Miyaki, K. (2001) VLF/LF Sounding of the Lower Ionosphere to Study the Role of Atmospheric Oscillations in the Lithosphere-Ionosphere Coupling. Advances in Polar Upper Atmosphere Research, 15, 146-158.
[146]  Miyaki, K., Hayakawa, M. and Molchanov, O.A. (2002) The Role of Gravity Waves in the Lithosphere-Ionosphere Coupling, as Revealed from the Subionospheric LF Propagation Data. In: Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 229-232.
[147]  Hayakawa, M., Kasahara, Y., Nakamura, T., Hobara, Y., Rozhnoi, A., Solovieva, M., Molchanov, O.A. and Korepanov, V. (2011) Atmospheric Gravity Waves as a Possible Candidate for Seismo-Ionospheric Perturbations. Journal of Atmospheric Electricity, 31, 129-140.
https://doi.org/10.1541/jae.31.129
[148]  Molchanov, O.A., Mazhaeva, O.A., Goliavin, A.N. and Hayakawa, M. (1993) Observations by the Intercosmos-24 Satellite of ELF-VLF Electromagnetic Emissions Associated with Earthquakes. Annales Geophysicae, 11, 431-440.
[149]  Yasuoka, Y. (2012) Radon Anomalies Prior to Earthquakes. In: Hayakawa, M., Ed., The Frontier of Earthquake Prediction Studies, Nihon-Senmontosho-Shuppan, Tokyo, 410-427. (In Japanese)
[150]  Denisenko, V.V. (2015) Estimate for the Strength of the Electric Field Penetration from the Earth’s Surface to the Ionosphere. Russian Journal of Physical Chemistry, 70, 2251-2253.
[151]  Prokhorov, B.E. and Zolotov, O.V. (2017) Comment on “An Improved Coupling Model for the Lithosphere-Atmosphere-Ionosphere Coupling System” by Kuo et al. (2014). Journal of Geophysical Research, Space Physics, 122, 4865-4868.
https://doi.org/10.1002/2016JA023441
[152]  Surkov, V.V., Pilipenko, V.A. and Silina, A.S. (2020) Can Radioactive Emanations in a Seismically Active Region Affect Atmospheric Electricity and the Ionosphere? Izvestiya, Physics of the Solid Earth, 58, 297-305.
https://doi.org/10.1134/S1069351322030090
[153]  Chmyrev, V.M., Isaev, N.B., Bilichenko, S.V. and Stanev, G. (1986) Electric Fields and Hydromagnetic Waves in Ionosphere above the Focus of Earthquake. Geomagnetism and Aeronomy, 26, 1020-1022.
[154]  Hayakawa, M., Kasahara, Y., Endoh, T., Hobara, Y. and Asai, S. (2012) The Observation of Doppler Shifts of Subionospheric LF Signal in Possible Association with Earthquakes. Journal of Geophysical Research, 117, A09304.
https://doi.org/10.1029/2012JA017752
[155]  Davies, K. and Baker, D.M. (1965) Ionospheric Effects Observed around the Three Alaskan Earthquakes of March 28, 1964. Journal of Geophysical Research, 70, 2251-2253.
https://doi.org/10.1029/JZ070i009p02251
[156]  Weaver, P.F., Yuen, P.C., Proless, W. and Furumoto, A.S. (1970) Acoustic Coupling into the Ionosphere from Seismic Waves of the Earth at Kurile Islands on August 11, 1969. Nature, 226, 1239-1241.
https://doi.org/10.1038/2261239a0
[157]  Korepanov, V., Hayakawa, M., Yampolski, Y. and Lizunov, G. (2009) AGW as a Seismo-Ionospheric Coupling Responsible Agent. Physics and Chemistry of the Earth, Parts A/B/C, 34, 485-495.
https://doi.org/10.1016/j.pce.2008.07.014
[158]  Nakamura, T., Korepanov, V., Kasahara, Y., Hobara, Y. and Hayakawa, M. (2013) An Evidence on the Lithosphere-Ionosphere Coupling in Terms of Atmospheric Gravity Waves on the Basis of a Combined Analysis of Surface Pressure, Ionospheric Perturbations and Ground-Based ULF Variations. Journal of Atmospheric Electricity, 33, 53-68.
https://doi.org/10.1541/jae.33.53
[159]  Yang, S.S., Asano, T. and Hayakawa, M. (2019) Abnormal Gravity Wave Activity in the Stratosphere Prior to the 2016 Kumamoto Earthquakes. Journal of Geophysical Research: Space Physics, 124, 1410-1425.
https://doi.org/10.1029/2018JA026002
[160]  Yang, S.S., Potirakis, S.M., Sasmal, S. and Hayakawa, M. (2020) Natural Time Analysis of Global Navigation Satellite System Surface Deformation: The Case of the 2016 Kumamoto Earthquakes. Entropy, 22, Article No. 674.
https://doi.org/10.3390/e22060674
[161]  Yang, S.S. and Hayakawa, M. (2020) Gravity Wave Activity in the Stratosphere before the 2011 Tohoku Earthquake as the Mechanism of Lithosphere-Atmosphere-Ionosphere Coupling. Entropy, 22, Article No. 110.
https://doi.org/10.3390/e22010110
[162]  Kundu, S., Chowdhury, S., Ghosh, S., Sasmal, S., Politis, D., Potirakis, S.M., Yang, S.S., Chakrabarti, S.K. and Hayakawa, M. (2022) Seismogenic Anomalies in Atmospheric Gravity Waves Observed from SABER/TIMED Satellite during Large Earthquakes. Journal of Sensors, 2022, Article ID: 3201104.
https://doi.org/10.1155/2022/3201104
[163]  Politis, Z., Potirakis, S.M., Kundu, S., Chowdhury, S., Sasmal, S. and Hayakawa, M. (2022) Critical Dynamics in Stratospheric Potential Energy Variations Prior to Significant (M ≥ 6.7) Earthquakes. Symmetry, 14, Article No. 1939.
https://doi.org/10.3390/sym14091939
[164]  Freund, F. (2009) Stress-Activated Positive Hole Charge Carriers in Rocks and the Generation of Pre-Earthquake Signals. In: Hayakawa, M., Ed., Electromagnetic Phenomena Associated with Earthquakes, Transworld Research Network, Trivandrum, 41-96.
[165]  Sorokin, V.M., Chmyrev, V.M. and Hayakawa, M. (2020) A Review on Electrodynamic Influence of Atmospheric Processes to the Ionosphere. Open Journal of Earthquake Research (OJER), 9, 113-141.
https://doi.org/10.4236/ojer.2020.92008
[166]  Ogawa, T., Tanaka, Y., Fraser-Smith, A.C. and Gendrin, R. (1967) Worldwide Simultaneity of a Q-Burst in the Schumann Resonance Frequency Range. Journal of Geomagnetism and Geoelectricity, 19, 377-384.
https://doi.org/10.5636/jgg.19.377
[167]  Williams, E.R. (1992) The Schumann Resonances: A Global Tropical Thermometer. Science, 256, 1184-1188.
https://doi.org/10.1126/science.256.5060.1184
[168]  Fullekrug, M., Mareev, E.A. and Rycroft, M.J. (2006) Sprites, Elves, and Intense Lightning Discharges. NATO Science Series, Springer, Dordrecht, 398 p.
https://doi.org/10.1007/1-4020-4629-4
[169]  Surkvo, V.V. and Hayakawa, M. (2020) Progress in the Study of Transient Luminous and Atmospheric Events: A Review. Surveys in Geophysics, 41, 1101-1142.
https://doi.org/10.1007/s10712-020-09597-2
[170]  Hobara, Y., Ohta, K., Hayakawa, M. and Fukunishi, H. (2003) Lightning Discharges in Association with Mesospheric Optical Phenomena in Japan and Their Effect on the Lower Ionosphere. Advances in Polar Upper Atmosphere Research, 17, 30-47.
[171]  Schekotov, A.Y., Molchanov, O.A., Hayakawa, M., Fedorov, E.N., Chebrov, V.N., Sinitsin, V.I., Gordeev, E.E., Belyaev, G.G. and Yagova, N.V. (2007) ULF/ELF Magnetic Field Variations from Atmosphere Induced by Seismicity. Radio Science, 42, RS6S90.
https://doi.org/10.1029/2005RS003441
[172]  Fowler, R.A., Kotick, B.J. and Elliot, R.D. (1967) Polarization Analysis of Natural and Artificially Induced Geomagnetic Micropulsations. Journal of Geophysical Research, 72, 2871-2875.
https://doi.org/10.1029/JZ072i011p02871
[173]  Schekotov, A.Y., Molchanov, O.A., Hayakawa, M., Fedorov, E.N., Chebrov, V.N., Sinitsin, V.I., Gordeev, E.E. andreevsky, S.E., Belyaev, G.G., Yagova, N.V., Gladishev, V.A. and Baransky, L.N. (2008) About Possibility to Locate an EQ Epicenter Using Parameters of ELF/ULF Preseismic Emission. Natural Hazards and Earth System Sciences, 8, 1237-1242.
https://doi.org/10.5194/nhess-8-1237-2008
[174]  Ohta, K., Watanabe, N. and Hayakawa, M. (2005) Observation of Precursory Phenomena of Earthquakes Using ELF Electromagnetic Waves. Journal of Atmospheric Electricity, 25, 11-18.
https://doi.org/10.1541/jae.25.11
[175]  Hata, M., Ohta, K., Izutsu, J., Takumi, I., Fujii, T., Sato, T., Yanashi, S. and Watanabe, N. (2010) Development of ULF Band Receiver for Detecting Electromagnetic Wave Precursor of Earthquakes. Journal of Atmospheric Electricity, 31, 13-36.
https://doi.org/10.1541/jae.30.13
[176]  Schekotov, A., Chebrov, D., Hayakawa, M. and Belyaev, G. (2021) Estimation of the Epicenter Position of Kamchatka Earthquakes. Pure and Applied Geophysics, 178, 813-821.
https://doi.org/10.1007/s00024-021-02679-1
[177]  Schekotov, A., Hayakawa, M. and Potirakis, S.M. (2021) Does Air Ionization by Radon Cause Low-Frequency Earthquake Precursor? Natural Hazards, 106, 701-714.
https://doi.org/10.1007/s11069-020-04487-7
[178]  Mareev, E.A., Iudin, D.I. and Molchanov, O.A. (2002) Mosaic Source of Internal Gravity Waves Associated with Seismic Activity. In: Hayakawa, M. and Molchanov, O.A., Eds., Seismo Electromagnetics; Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 335-342.
[179]  Hayakawa, M., Ohta, K., Nickolaenko, A.P. and Ando, Y. (2005) Anomalous Effect in Schumann Resonance Phenomena Observed in Japan, Possibly Associated with the Chi-Chi Earthquake in Taiwan. Annales Geophysicae, 23, 1335-1346.
https://doi.org/10.5194/angeo-23-1335-2005
[180]  Ohta, K., Watanabe, N. and Hayakawa, M. (2006) Survey of Anomalous Schumann Resonance Phenomena Observed in Japan, in Possible Association with Earthquakes in Taiwan. Physics and Chemistry of the Earth, 31, 397-402.
https://doi.org/10.1016/j.pce.2006.02.031
[181]  Hayakawa. M., Nickolaenko, A.P., Sekiguchi, M., Yamashita, K., Ida, Y. and Yano, M. (2008) Anomalous ELF Phenomena in the Schumann Resonance Band as Observed at Moshiri (Japan) in Possible Association with an Earthquake in Taiwan. Natural Hazards and Earth System Sciences, 8, 1309-1316.
https://doi.org/10.5194/nhess-8-1309-2008
[182]  Ohta, K., Izutsu, J. and Hayakawa, M. (2009) Anomalous Excitation of Schumann Resonances and Additional Anomalous Resonances before the 2004 Mid-Niigata Prefecture Earthquake and the 2007 Noto Hantou Earthquake. Physics and Chemistry of the Earth, Parts A/B/C, 34, 441-448.
https://doi.org/10.1016/j.pce.2008.07.008
[183]  Ouyang, X., Zhang, X., Nickolaenko, A.P., Hayakawa, M., Shen, X. and Miao, Y. (2013) Schumann Resonance Observation in China and Anomalous Disturbance Possibly Associated with Tohoku M 9.0 Earthquake. Earth Sciences, 26, 137-145.
https://doi.org/10.1007/s11589-013-0009-0
[184]  Gazquez, J.A., Garcia, R.M., Castellano, N.N., Fernandez-Ros, M., Perea-Moreno, A.J. and Manzano-Agugliaro, F. (2017) Applied Engineering Using Schumann Resonance for Earthquake Monitoring. Applied Sciences, 7, Article ID: 1113.
https://doi.org/10.3390/app7111113
[185]  Christofilakis, V., Tatsis, G., Votis, C., Contopoulos, I., Repapis, C. and Tritakis, V. (2019) Significant ELF Perturbations in the Schumann Resonance Band before and during a Shallow Mid-Magnitude Seismic Activity in the Greek Area (Kalpuki). Journal of Atmospheric and Solar-Terrestrial Physics, 182, 138-146.
https://doi.org/10.1016/j.jastp.2018.11.009
[186]  Tritakis, V., Contopoulos, I., Miynarczyk, J., Christofilakis, V., Tatsis, G. and Repapis, C. (2022) How Effective and Prerequisite Are Electromagnetic Extremely Low Frequency (ELF) Recordings in the Schumann Resonances Band to Function as Seismic Activity Precursors. Atmosphere, 13, Article No. 185.
https://doi.org/10.3390/atmos13020185
[187]  Greifinger, C. and Grifinger, P. (1978) Approximate Method for Determining ELF Eigenvalues in the Earth-Ionosphere Waveguide. Radio Science, 13, 831-837.
https://doi.org/10.1029/RS013i005p00831
[188]  Mushtak, V.C. and Williams, E.R. (2002) ELF Propagation Parameters for Uniform Models of the Earth-Ionosphere Waveguide. Journal of Atmospheric and Solar-Terrestrial Physics, 64, 1989-2001.
https://doi.org/10.1016/S1364-6826(02)00222-5
[189]  Ruzhin, Yu.Ya. and Depueva, A.Kh. (1996) Seismoprecursors in Space as Plasma and Wave Anomalies. Journal of Atmospheric Electricity, 16, 271-288.
https://doi.org/10.1541/jae.16.271
[190]  Chuo, Y.J., Liu, J.Y., Pulinets, S.A. and Chen, Y.I. (2002) The Ionospheric Perturbations Prior to the Chi-Chi and Chia-Yi Earthquakes. Journal of Geodynamics, 33, 509-517.
https://doi.org/10.1016/S0264-3707(02)00011-X
[191]  Nickolaenko, A.P., Hayakawa, M., Sekiguchi, M. ando, Y. and Ohta, K. (2006) Model Modifications in Schumann Resonance Intensity Caused by a Localized Ionosphere Disturbance over the Earthquake Epicenter. Annales Geophysicae, 24, 567-575.
https://doi.org/10.5194/angeo-24-567-2006
[192]  Hayakawa, M., Nickolaenko, A.P., Galuk, Y. and Kudintseva, I.G. (2020) Scattering of Extremely Low Frequency Electromagnetic Waves by a Localized Seismogenic Ionospheric Perturbation: Observation and Interpretation. Radio Science, 55, e2020RS007130.
https://doi.org/10.1029/2020RS007130
[193]  Hayakawa, M., Nickolaenko, A.P., Galuk, Y. and Kudintseva, I.G. (2020) Manifestation of Nearby Earthquakes in Schumann Resonance Spectra. International Journal of Electronics and Applied Research, 7, 1-28.
https://doi.org/10.33665/IJEAR.2020.v07i01.001
[194]  Hayakawa, M., Izutsu, J., Schekotov, A.Yu., Nickolaenko, A.P., Galuk, Yu.P. and Kudintseva, I.G. (2021) Anomalies of Schumann Resonances as Observed near Nagoya Associated with Two Huge (M~7) Tohoku Offshore Earthquakes in 2021. Journal of Atmospheric and Solar-Terrestrial Physics, 225, Article ID: 105761.
https://doi.org/10.1016/j.jastp.2021.105761
[195]  Ouzounov, D., Pulinets, S., Davidenko, D., Rozhnoi, A., Solovieva, M., Fedun, V., Dwivedi, B.N., Rybin, A., Kafatos, M. and Taylor, P. (2021) Transient Effects in Atmosphere and Ionosphere Preceding the 2015 M7.8 and M7.3 Gorkha—Nepal Earthquakes. Frontiers in Earth Science, 9, Article ID: 757358.
https://doi.org/10.3389/feart.2021.757358
[196]  Sasmal, S., Chowdhury, S., Kundu, S., Politis, D.Z., Potirakis, S.M., Balasis, G., Hayakawa, M. and Chakrabarti, S.K. (2021) Pre-Seismic Irregularities during the 2020 Samos (Greece) Earthquake (M = 6.9) as Investigated from Multi-Parameter Approach by Ground and Space-Based Techniques. Atmosphere, 12, Article No. 1059.
https://doi.org/10.3390/atmos12081059
[197]  De Santis, A., Cianchini, G., Marchetti, D., Piscini, A., Sabbagh, D., Perrone, L., et al. (2020) A Multiparametric Approach to Study the Preparation Phase of the 2019 M7.1 Ridgecrest (California, United States) Earthquake. Frontiers in Earth Science, 8, Article No. 478.
https://doi.org/10.3389/feart.2020.540398
[198]  Akhoozdzaeh, M., De Santis, A., Marchetti, D., Piscini, A. and Cianchini, G. (2018) Multi Precursors Analysis Associated with Powerful Ecuador (Mw = 7.8) Earthquake of 16 April 2016 Using Swarm Satellites Data in Conjunction with Other Multi-Platform Satellite and Ground Data. Advances in Space Research, 61, 248-263.
https://doi.org/10.1016/j.asr.2017.07.014
[199]  Marchetti, D., De Santis, A., Shen, X.H., Campuzano, S.A., Perrone, L., Piscini, A., Di Giovambattista, R., Jin, S.G., Ippolito, A., Cesaroni, G., Sabbagh, D., Spogli, L., Zeren, Z.M. and Huang, J.P. (2020) Possible Lithosphere-Atmosphere-Ionosphere Coupling Effects Prior to the 2018 Mw = 7.5 Indonesia Earthquake from Seismic, Atmospheric and Ionospheric Data. Journal of Asian Earth Sciences, 188, Article ID: 104097.
https://doi.org/10.1016/j.jseaes.2019.104097
[200]  Uyeda, S., Nagao, T., Noda, Y., Hayakawa, M., Miyaki, K., Molchanov, O., Gladyshev, V., Baransky, L., Schekotov, A., Belyaev, G., Fedorov, E., Pokhotelov, O., Anreevsky, S., Rozhnoi, A., Khabazin, Y., Gorbatikov, A., Gordeev, A., Chebrov, V., Lutikov, A., Yanga, S., Kosarev, G. and Surkov, V. (2002) Russian-Japanese Complex Geophysical Observatory in Kamchatka for Monitoring of Phenomena Connected with Sesismic Activity. In: Hayakawa, M. and Molchanov, O.A., Eds., Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 413-419.
[201]  Gladyshev, V., Barasky, L., Schekotov, A., Fedorov, E., Pokhotelov, O., Anreevsky, S., Rozhnoi, A., Khabazin, Y., Belyaev, G., Gorbatikov, A., Gordeev, E., Chebrov, V., Sinitsin, V., Lutikov, A., Yanga, S., Kosarev, G., Surkov, V., Molchanov, O., Hayakawa, M., Uyeda, S., Nagao, T., Hattori, K. and Noda, Y. (2002) Some Preliminary Results of Seismo-Electromagnetic Research at Complex Geophysical Observatory Kamchatka. In: Hayakawa, M. and Molchanov, O.A., Eds., Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 421-432.
[202]  Chen, C.H., Sun, Y.Y., Lin, K., Zhou, C., Xu, R., Qiang, H., Gao, Y., Chen, T., Wang, F., Yu, H., Han, P., Tang, C.C., .Su, X., Zhang, X., Yuan, L., Xu, Y., Liu, J.Y. and Yu, S. (2021) A New Instrumental Array in Sichuan, China to Monitor Vibrations and Perturbations of the Lithosphere, Atmosphere and Ionosphere. Surveys in Geophysics, 42, 1425-1442.
https://doi.org/10.1007/s10712-021-09665-1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413