全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Proposed Wave Momentum Source for Generating the 22-Year Solar Cycle

DOI: 10.4236/ijaa.2023.132005, PP. 74-88

Keywords: Dynamo Models Apply Artificial Nonlinearity, Wave Generated Nonlinear Terrestrial 2-Year Oscillation Model-Analogue Example, Helioseismology Wave Source Proposed for Solar Cycle Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

For the 22-year solar cycle oscillation there is no external time dependent source. A nonlinear oscillation, the solar cycle must be generated internally, and Babcock-Leighton models apply an artificial nonlinear source term that can simulate the observations—which leaves open the question of the actual source mechanism for the solar cycle. Addressing this question, we propose to take guidance from the wave mechanism that generates the 2-year Quasi-biennial Oscillation (QBO) in the Earth atmosphere. Upward propagating gravity waves, eastward and westward, deposit momentum to generate the observed zonal wind oscillation. On the Sun, helioseismology has provided a thorough understanding of the acoustic p-waves, which propagate down into the convective envelope guided by the increasing temperature and related propagation velocity. Near the tachocline with low turbulent viscosity, the waves propagating eastward and westward can produce an axisymmetric 22-year oscillation of the zonal flow velocities that can generate the magnetic solar dynamo. Following the Earth model, waves in opposite directions can generate in the Sun wind and magnetic field oscillations in opposite directions, the proposition of a potential solar cycle mechanism.

References

[1]  Dikpati, M. and Charbonneau, P. (1999) A Babcock-Leighton Flux Transport Dynamo with Solar-Like Differential Rotation. The Astrophysical Journal, 518, 508-520.
https://doi.org/10.1086/307269
[2]  Babcock, H.W. (1961) The Topology of the Sun’s Magnetic Field and the 22-Year Cycle. The Astrophysical Journal, 133, 572-589.
https://doi.org/10.1086/147060
[3]  Leighton, R.B. (1969) A Magneto-Kinematic Model of the Solar Cycle. The Astrophysical Journal, 156, 1-26.
https://doi.org/10.1086/149943
[4]  Charbonneau, P. (2010) Dynamo Models of the Solar Cycle. Living Reviews in Solar Physics, 7, Article No. 3.
https://doi.org/10.12942/lrsp-2010-3
[5]  Scherrer, P.H., Bogard, R.S., Bush, R.I., et al. (1995) The Solar Oscillations Investigation—Michelson Doppler Imager. Solar Physics, 162, 129-188.
https://doi.org/10.1007/978-94-009-0191-9_5
[6]  Rempel, M. (2006) Flux-Transport Dynamos with Lorentz Force Feedback on Differential Rotation and Meridional Flow: Saturation Mechanism and Torsional Oscillations. The Astrophysical Journal, 647, 662-675.
https://doi.org/10.1086/505170
[7]  Brun, A.S., Miesch, M.S. and Toomre, J. (2004) Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope. The Astrophysical Journal, 614, 1073-1098.
https://doi.org/10.1086/423835
[8]  Lindzen, R.S. and Holton, J.R. (1968) A Theory of the Quasi-Biennial Oscillation. Journal of the Atmospheric Sciences, 25, 1095-1968.
https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2
[9]  Holton, J.R. and Lindzen, R.S. (1972) An Updated Theory for the Quasi-Biennial Cycle of the Tropical Stratosphere. Journal of the Atmospheric Sciences, 29, 1076-1080.
https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2
[10]  Hitchman, M.H. and Leovy, C.B. (1988) Estimation of the Kelvin Wave Contribution to the Semiannual Oscillation. Journal of the Atmospheric Sciences, 45, 1462-1475.
https://doi.org/10.1175/1520-0469(1988)045<1462:EOTKWC>2.0.CO;2
[11]  Mengel, J.G., Mayr, H.G., Chan, K.L., Hines, C.O., Reddy, C.A., Arnold, N.F. and Porter, H.S. (1995) Equatorial Oscillations in the Middle Atmosphere Generated by Small Scale Gravity Waves. Geophysical Research Letters, 22, 3027-3030.
https://doi.org/10.1029/95GL03059
[12]  Dunkerton, T.J. (1997) The Role of the Gravity Waves in the Quasi-Biennial Oscillation. Journal of Geophysical Research, 102, 26053-26076.
https://doi.org/10.1029/96JD02999
[13]  Akmaev, R.A. (2001) Simulation of Large-Scale Dynamics in the Mesosphere and Lower Thermosphere with the Doppler-Spread Parameterization of Gravity Waves: 1. Implementation and Zonal Mean Climatologies. Journal of Geophysical Research, 106, 1193-1204.
https://doi.org/10.1029/2000JD900520
[14]  Chan, K.L., Mayr, H.G., Mengel, J.G. and Harris, I. (1994) A “Stratified” Spectral Model for Stable and Convective Atmospheres. Journal of Computational Physics, 113, 165-176.
https://doi.org/10.1006/jcph.1994.1128
[15]  Mayr, H.G, Mengel, J.G., Hines, C.O., Chan, K.L., Arnold, N.F., Reddy, C.A. and Porter, H.S. (1997) The Gravity Wave Doppler Spread Theory Applied in a Numerical Spectral Model of the Middle Atmosphere, 1, Model and Global-Scale Seasonal Variations. Journal of Geophysical Research, 102, 26077-26091.
https://doi.org/10.1029/96JD03213
[16]  Hines, C.O. (1997) Doppler-Spread Parameterization of Gravity-Wave Momentum Deposition in the Middle Atmosphere, 1, Basic Formulation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 371-386.
https://doi.org/10.1016/S1364-6826(96)00079-X
[17]  Hines, C.O. (1997) Doppler-Spread Parameterization of Gravity-Wave Momentum Deposition in the Middle Atmosphere, 2, Broad and Quasi Monochromatic Spectra, and Implementation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 387-400.
https://doi.org/10.1016/S1364-6826(96)00080-6
[18]  Mayr, H.G, Mengel, J.G., Reddy, C.A., Chan, K.L. and Porter, H.S. (2000) Properties of QBO and SAO Generated by Gravity Waves. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1135-1154.
https://doi.org/10.1016/S1364-6826(00)00103-6
[19]  Mayr, H.G. and Schatten, K.H. (2011) Nonlinear Oscillators in Space Physics. Journal of Atmospheric and Solar-Terrestrial Physics, 74, 44-50.
https://doi.org/10.1016/j.jastp.2011.09.008
[20]  Mayr, H.G., Mengel, J.G., Reddy, C.A., Chan, K.L. and Porter, H.S. (1999) The Role of Gravity Waves in Maintaining the QBO and SAO at Equatorial Latitudes. Advances in Space Research, 24, 1531-1541.
https://doi.org/10.1016/S0273-1177(99)00876-5
[21]  Howe, R. (2009) Solar Interior Rotation and Its Variation. Living Reviews in Solar Physics, 6, Article No. 1.
https://doi.org/10.12942/lrsp-2009-1
[22]  Basu, S. (2016) Global Seismology of the Sun. Living Reviews in Solar Physics, 13, Article No. 2.
https://doi.org/10.1007/s41116-016-0003-4
[23]  Paterno, L. (2010) The Solar Differential Rotation: A Historical Review. Astrophysics and Space Science, 328, 269-277.
https://doi.org/10.1007/s10509-009-0218-0
[24]  Harvey, J.W., Hill, F., Hubbard, R.P., et al. (1996) The Global Observations Network Group (GONG) Project. Science, 272, 1284-1286.
https://doi.org/10.1126/science.272.5266.1284
[25]  Gabriel, A.H., Grec, G., Charra, J., et al. (1995) Global Oscillations at Low Frequency from the SOHO Mission (GOLF). Solar Physics, 162, 61-99.
https://doi.org/10.1007/978-94-009-0191-9_3
[26]  Hines, C.O. and Reddy C.O. (1967) On the Propagation of Atmospheric Gravity Waves through Regions of Wind Shear. Journal of Geophysical Research, 72, 1015-1034.
https://doi.org/10.1029/JZ072i003p01015
[27]  Booker, J.R. and Breton, F.T. (1967) The Critical Layer for Internal Gravity Waves in a Shear Flow. Journal of Fluid Mechanics, 27, 513-519.
https://doi.org/10.1017/S0022112067000515
[28]  Rogers, T.M., MacGregor, K.B. and Glatzmaier, G.A. (2008) Non-Linear Dynamics of Gravity Wave Driven Flows in the Solar Radiative Interior. Monthly Notices of the Royal Astronomical Society, 387, 616-630.
https://doi.org/10.1111/j.1365-2966.2008.13289.x
[29]  Mayr, H.G., Wolff, C.L. and Hartle, R.E. (2001) Wave Driven Non-Linear Flow Oscillation for the 22-Year Solar Cycle. Geophysical Research Letters, 28, 463-466.
https://doi.org/10.1029/2000GL012223
[30]  Mayr, H.G, Mengel, J.G. and Chan, K.L. (1998) Equatorial Oscillations Maintained by Gravity Waves as Described with the Doppler Spread Parameterization: II. Heuristic Analysis. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 201-213.
https://doi.org/10.1016/S1364-6826(97)00123-5
[31]  Imada, S., et al. (2020) Solar Cycle-Related Variation in Solar Differential Rotation and Meridional Flow in Solar Cycle 24. Earth, Planets and Space, 72, Article No. 182.
https://doi.org/10.1186/s40623-020-01314-y

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413