全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Turing Instability of Gray-Scott Reaction-Diffusion Model with Time Delay Effects

DOI: 10.4236/ijmnta.2023.122004, PP. 55-67

Keywords: Reaction Diffusion, Turing Bifurcation, Normal Form, Time Delay

Full-Text   Cite this paper   Add to My Lib

Abstract:

The reaction diffusion Gray-Scott model with time delay is put forward with the assumption of Neumann boundary condition is satisfied. Based on the Turing bifurcation condition, the Turing curves on two parameter plane are discussed without time delay. The normal form is computed via applying Lyapunov-Schmidt reduction method in system of PDE, and the bifurcating direction of pitchfork bifurcation underlying codimension-1 singularity of Turing point is computed. The continuation of Pitchfork bifurcation is simulated with varying free parameter continuously near the turing point, which is in coincidence with the theoritical analysis results. The wave pattern formation in the case of turing instability is also simulated which discover Turing oscillation phenomena from periodicity to irregularity.

References

[1]  Smith, H. (2011) An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, Berlin.
https://doi.org/10.1007/978-1-4419-7646-8
[2]  Kuang, K. (1992) Delay Differential Equations with Application in Population Dynamics. Springer, New York.
[3]  Skalski, G. and Gilliam, J.F. (2002) Functional Responses with Predator Interference: Viable Alternatives to the Holling Type II Model. Ecology, 82, 3083-3092.
https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
[4]  Jeschke, J., Kopp, J.M. and Tollrian, R. (2002) Predator Functional Responses: Discriminating between Handling and Digesting Prey. Ecological Monographs, 72, 95-112.
https://doi.org/10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2
[5]  Chang, S.L. and Jeng, B.W. (2007) Liapunov Schmidt Reduction and Continuation for Nonlinear Schordinger Equations. SIAM Journal on Scientific Computing, 29, 729-755.
https://doi.org/10.1137/050642861
[6]  Bohmer, K. (1993) On a Numerical Liapunov-Schmidt Method for Operator Equations. Computing, 51, 237-269.
https://doi.org/10.1007/BF02238535
[7]  Bohmer, K. and Mei, Z. (1990) On a Numerical Liapunov-Schmidt Method. In: Allgower, E.L. and Georg, K., Eds., Computational Solution of Nonlinear Systems of Equations, Lectures in Applied Mathematics, Vol. 26, 79-98.
[8]  Ashwin, P., Bohmer, K. and Mei, Z. (1995) A Numerical Liapunov-Schmidt Method with Applications to Hopf Bifurcation on a Square. Mathematics of Computation, 64, 649-670.
https://doi.org/10.1090/S0025-5718-1995-1284661-X
[9]  Shi, H.B., Li, W.T. and Lin, G. (2010) Positive Steady States of a Diffusive Predator Prey System with Modified Holling Tanner Functional Response. Nonlinear Analysis: Real World Applications, 11, 3711-3721.
https://doi.org/10.1016/j.nonrwa.2010.02.001
[10]  Li, M.F., Han, B., Xu, L. and Zhang, G. (2013) Spiral Patterns Near Turing Instability in a Discrete Reaction Diffusion System. Chaos, Solitons & Fractals, 49, 1-6.
https://doi.org/10.1016/j.chaos.2013.01.010
[11]  Mukhopadhyay, B. and Bhattacharyya, R. (2006) Modeling the Role of Diffusion Coefficients on Turing Instability in a Reaction Diffusion Prey Predator System. Bulletin of Mathematical Biology, 68, 293-313.
https://doi.org/10.1007/s11538-005-9007-2
[12]  Hsu, S.B. and Huang, T.W. (1995) Global Stability for a Class of Predator Prey Systems. SIAM Journal on Applied Mathematics, 55, 763-783.
https://doi.org/10.1137/S0036139993253201
[13]  Fedoseyev, A.I., Friedman, M.J. and Kansa, E.J. (2002) Improved Multiquadric Method for Elliptic Partial Differential Equations via PDE Collocation on the Boundary. Computers & Mathematics with Applications, 43, 439-455.
https://doi.org/10.1016/S0898-1221(01)00297-8
[14]  Hioe, F.T. (1999) Solitary Waves for N Coupled Nonlinear Schrodinger Equations. Physical Review Letters, 82, 1152-1155.
https://doi.org/10.1103/PhysRevLett.82.1152
[15]  Ahmed, B. (2012) 1-Soliton Solution for Zakharov Equations. Advanced Studies in Theoretical Physics, 6, 457-466.
[16]  Bao, W. and Yang, L. (2007) Efficient and Accurate Numerical Methods for the Klein-Gordon-Schrödinger Equations. Journal of Computational Physics, 225, 1863-1893.
https://doi.org/10.1016/j.jcp.2007.02.018
[17]  Hu, G.P., Li, X.L. and Wang, Y.P. (2015) Pattern Formation and Spatiotemporal Chaos in a Reaction—Diffusion Predator—Prey System. Nonlinear Dynamics, 81, 265-275.
https://doi.org/10.1007/s11071-015-1988-2
[18]  Banerjee, M. and Banerjee, S. (2012) Turing Instabilities and Spatio-Temporal Chaos in Ratio-Dependent Holling-Tanner Model. Mathematical Biosciences, 236, 64-76.
https://doi.org/10.1016/j.mbs.2011.12.005

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133